Cargando…
Pooled genetic screens with image‐based profiling
Spatial structure in biology, spanning molecular, organellular, cellular, tissue, and organismal scales, is encoded through a combination of genetic and epigenetic factors in individual cells. Microscopy remains the most direct approach to exploring the intricate spatial complexity defining biologic...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9650298/ https://www.ncbi.nlm.nih.gov/pubmed/36366905 http://dx.doi.org/10.15252/msb.202110768 |
Sumario: | Spatial structure in biology, spanning molecular, organellular, cellular, tissue, and organismal scales, is encoded through a combination of genetic and epigenetic factors in individual cells. Microscopy remains the most direct approach to exploring the intricate spatial complexity defining biological systems and the structured dynamic responses of these systems to perturbations. Genetic screens with deep single‐cell profiling via image features or gene expression programs have the capacity to show how biological systems work in detail by cataloging many cellular phenotypes with one experimental assay. Microscopy‐based cellular profiling provides information complementary to next‐generation sequencing (NGS) profiling and has only recently become compatible with large‐scale genetic screens. Optical screening now offers the scale needed for systematic characterization and is poised for further scale‐up. We discuss how these methodologies, together with emerging technologies for genetic perturbation and microscopy‐based multiplexed molecular phenotyping, are powering new approaches to reveal genotype–phenotype relationships. |
---|