Cargando…
Error driven synapse augmented neurogenesis
Capturing the learning capabilities of the brain has the potential to revolutionize artificial intelligence. Humans display an impressive ability to acquire knowledge on the fly and immediately store it in a usable format. Parametric models of learning, such as gradient descent, focus on capturing t...
Autores principales: | Perrett, Adam, Furber, Steve B., Rhodes, Oliver |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9650404/ https://www.ncbi.nlm.nih.gov/pubmed/36388403 http://dx.doi.org/10.3389/frai.2022.949707 |
Ejemplares similares
-
Distribution-preserving data augmentation
por: Saran, Nurdan Ayse, et al.
Publicado: (2021) -
Data-Driven Prediction of Fatigue in Parkinson’s Disease Patients
por: Lee, Dong Goo, et al.
Publicado: (2021) -
Analysis of cause-effect inference by comparing regression errors
por: Blöbaum, Patrick, et al.
Publicado: (2019) -
Augmenting Semantic Lexicons Using Word Embeddings and Transfer Learning
por: Alshaabi, Thayer, et al.
Publicado: (2022) -
Data augmentation based malware detection using convolutional neural networks
por: Catak, Ferhat Ozgur, et al.
Publicado: (2021)