Cargando…
Interpretable machine learning methods for predictions in systems biology from omics data
Machine learning has become a powerful tool for systems biologists, from diagnosing cancer to optimizing kinetic models and predicting the state, growth dynamics, or type of a cell. Potential predictions from complex biological data sets obtained by “omics” experiments seem endless, but are often no...
Autores principales: | Sidak, David, Schwarzerová, Jana, Weckwerth, Wolfram, Waldherr, Steffen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9650551/ https://www.ncbi.nlm.nih.gov/pubmed/36387282 http://dx.doi.org/10.3389/fmolb.2022.926623 |
Ejemplares similares
-
A Strategy for Functional Interpretation of Metabolomic Time Series Data in Context of Metabolic Network Information
por: Nägele, Thomas, et al.
Publicado: (2016) -
Editorial: Leveraging machine learning for omics-driven biomarker discovery
por: Li, Sheng, et al.
Publicado: (2023) -
Machine learning combining multi-omics data and network algorithms identifies adrenocortical carcinoma prognostic biomarkers
por: Martin-Hernandez, Roberto, et al.
Publicado: (2023) -
Identification of Four Novel Prognostic Biomarkers and Construction of Two Nomograms in Adrenocortical Carcinoma: A Multi-Omics Data Study via Bioinformatics and Machine Learning Methods
por: Yi, Xiaochun, et al.
Publicado: (2022) -
Computational Methods for Single-Cell Imaging and Omics Data Integration
por: Watson, Ebony Rose, et al.
Publicado: (2022)