Cargando…

Novel Nanotube Multiquantum Dot Devices

[Image: see text] Addressable quantum states well isolated from the environment are of considerable interest for quantum information science and technology. Carbon nanotubes are an appealing system, since a perfect crystal can be grown without any missing atoms and its cylindrical structure prevents...

Descripción completa

Detalles Bibliográficos
Autores principales: Tormo-Queralt, R., Møller, C. B., Czaplewski, D. A., Gruber, G., Cagetti, M., Forstner, S., Urgell-Ollé, N., Sanchez-Naranjo, J. A., Samanta, C., Miller, C. S., Bachtold, A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9650726/
https://www.ncbi.nlm.nih.gov/pubmed/36287197
http://dx.doi.org/10.1021/acs.nanolett.2c03034
_version_ 1784828087054106624
author Tormo-Queralt, R.
Møller, C. B.
Czaplewski, D. A.
Gruber, G.
Cagetti, M.
Forstner, S.
Urgell-Ollé, N.
Sanchez-Naranjo, J. A.
Samanta, C.
Miller, C. S.
Bachtold, A.
author_facet Tormo-Queralt, R.
Møller, C. B.
Czaplewski, D. A.
Gruber, G.
Cagetti, M.
Forstner, S.
Urgell-Ollé, N.
Sanchez-Naranjo, J. A.
Samanta, C.
Miller, C. S.
Bachtold, A.
author_sort Tormo-Queralt, R.
collection PubMed
description [Image: see text] Addressable quantum states well isolated from the environment are of considerable interest for quantum information science and technology. Carbon nanotubes are an appealing system, since a perfect crystal can be grown without any missing atoms and its cylindrical structure prevents ill-defined atomic arrangement at the surface. Here, we develop a reliable process to fabricate compact multielectrode circuits that can sustain the harsh conditions of the nanotube growth. Nanotubes are suspended over multiple gate electrodes, which are themselves structured over narrow dielectric ridges to reduce the effect of the charge fluctuators of the substrate. We measure high-quality double- and triple-quantum dot charge stability diagrams. Transport measurements through the triple-quantum dot indicate long-range tunneling of single electrons between the left and right quantum dots. This work paves the way to the realization of a new generation of condensed-matter devices in an ultraclean environment, including spin qubits, mechanical qubits, and quantum simulators.
format Online
Article
Text
id pubmed-9650726
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-96507262022-11-15 Novel Nanotube Multiquantum Dot Devices Tormo-Queralt, R. Møller, C. B. Czaplewski, D. A. Gruber, G. Cagetti, M. Forstner, S. Urgell-Ollé, N. Sanchez-Naranjo, J. A. Samanta, C. Miller, C. S. Bachtold, A. Nano Lett [Image: see text] Addressable quantum states well isolated from the environment are of considerable interest for quantum information science and technology. Carbon nanotubes are an appealing system, since a perfect crystal can be grown without any missing atoms and its cylindrical structure prevents ill-defined atomic arrangement at the surface. Here, we develop a reliable process to fabricate compact multielectrode circuits that can sustain the harsh conditions of the nanotube growth. Nanotubes are suspended over multiple gate electrodes, which are themselves structured over narrow dielectric ridges to reduce the effect of the charge fluctuators of the substrate. We measure high-quality double- and triple-quantum dot charge stability diagrams. Transport measurements through the triple-quantum dot indicate long-range tunneling of single electrons between the left and right quantum dots. This work paves the way to the realization of a new generation of condensed-matter devices in an ultraclean environment, including spin qubits, mechanical qubits, and quantum simulators. American Chemical Society 2022-10-26 2022-11-09 /pmc/articles/PMC9650726/ /pubmed/36287197 http://dx.doi.org/10.1021/acs.nanolett.2c03034 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Tormo-Queralt, R.
Møller, C. B.
Czaplewski, D. A.
Gruber, G.
Cagetti, M.
Forstner, S.
Urgell-Ollé, N.
Sanchez-Naranjo, J. A.
Samanta, C.
Miller, C. S.
Bachtold, A.
Novel Nanotube Multiquantum Dot Devices
title Novel Nanotube Multiquantum Dot Devices
title_full Novel Nanotube Multiquantum Dot Devices
title_fullStr Novel Nanotube Multiquantum Dot Devices
title_full_unstemmed Novel Nanotube Multiquantum Dot Devices
title_short Novel Nanotube Multiquantum Dot Devices
title_sort novel nanotube multiquantum dot devices
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9650726/
https://www.ncbi.nlm.nih.gov/pubmed/36287197
http://dx.doi.org/10.1021/acs.nanolett.2c03034
work_keys_str_mv AT tormoqueraltr novelnanotubemultiquantumdotdevices
AT møllercb novelnanotubemultiquantumdotdevices
AT czaplewskida novelnanotubemultiquantumdotdevices
AT gruberg novelnanotubemultiquantumdotdevices
AT cagettim novelnanotubemultiquantumdotdevices
AT forstners novelnanotubemultiquantumdotdevices
AT urgellollen novelnanotubemultiquantumdotdevices
AT sancheznaranjoja novelnanotubemultiquantumdotdevices
AT samantac novelnanotubemultiquantumdotdevices
AT millercs novelnanotubemultiquantumdotdevices
AT bachtolda novelnanotubemultiquantumdotdevices