Cargando…
Bacterial lipopolysaccharide induces settlement and metamorphosis in a marine larva
How larvae of the many phyla of marine invertebrates find places appropriate for settlement, metamorphosis, growth, and reproduction is an enduring question in marine science. Biofilm-induced metamorphosis has been observed in marine invertebrate larvae from nearly every major marine phylum. Despite...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9651628/ https://www.ncbi.nlm.nih.gov/pubmed/35467986 http://dx.doi.org/10.1073/pnas.2200795119 |
_version_ | 1784828277157789696 |
---|---|
author | Freckelton, Marnie L. Nedved, Brian T. Cai, You-Sheng Cao, Shugeng Turano, Helen Alegado, Rosanna A. Hadfield, Michael G. |
author_facet | Freckelton, Marnie L. Nedved, Brian T. Cai, You-Sheng Cao, Shugeng Turano, Helen Alegado, Rosanna A. Hadfield, Michael G. |
author_sort | Freckelton, Marnie L. |
collection | PubMed |
description | How larvae of the many phyla of marine invertebrates find places appropriate for settlement, metamorphosis, growth, and reproduction is an enduring question in marine science. Biofilm-induced metamorphosis has been observed in marine invertebrate larvae from nearly every major marine phylum. Despite the widespread nature of this phenomenon, the mechanism of induction remains poorly understood. The serpulid polychaete Hydroides elegans is a well established model for investigating bacteria-induced larval development. A broad range of biofilm bacterial species elicit larval metamorphosis in H. elegans via at least two mechanisms, including outer membrane vesicles (OMVs) and complexes of phage-tail bacteriocins. We investigated the interaction between larvae of H. elegans and the inductive bacterium Cellulophaga lytica, which produces an abundance of OMVs but not phage-tail bacteriocins. We asked whether the OMVs of C. lytica induce larval settlement due to cell membrane components or through delivery of specific cargo. Employing a biochemical structure–function approach with a strong ecological focus, the cells and OMVs produced by C. lytica were interrogated to determine the class of the inductive compounds. Here, we report that larvae of H. elegans are induced to metamorphose by lipopolysaccharide produced by C. lytica. The widespread prevalence of lipopolysaccharide and its associated taxonomic and structural variability suggest it may be a broadly employed cue for bacterially induced larval settlement of marine invertebrates. |
format | Online Article Text |
id | pubmed-9651628 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | National Academy of Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-96516282022-11-15 Bacterial lipopolysaccharide induces settlement and metamorphosis in a marine larva Freckelton, Marnie L. Nedved, Brian T. Cai, You-Sheng Cao, Shugeng Turano, Helen Alegado, Rosanna A. Hadfield, Michael G. Proc Natl Acad Sci U S A Biological Sciences How larvae of the many phyla of marine invertebrates find places appropriate for settlement, metamorphosis, growth, and reproduction is an enduring question in marine science. Biofilm-induced metamorphosis has been observed in marine invertebrate larvae from nearly every major marine phylum. Despite the widespread nature of this phenomenon, the mechanism of induction remains poorly understood. The serpulid polychaete Hydroides elegans is a well established model for investigating bacteria-induced larval development. A broad range of biofilm bacterial species elicit larval metamorphosis in H. elegans via at least two mechanisms, including outer membrane vesicles (OMVs) and complexes of phage-tail bacteriocins. We investigated the interaction between larvae of H. elegans and the inductive bacterium Cellulophaga lytica, which produces an abundance of OMVs but not phage-tail bacteriocins. We asked whether the OMVs of C. lytica induce larval settlement due to cell membrane components or through delivery of specific cargo. Employing a biochemical structure–function approach with a strong ecological focus, the cells and OMVs produced by C. lytica were interrogated to determine the class of the inductive compounds. Here, we report that larvae of H. elegans are induced to metamorphose by lipopolysaccharide produced by C. lytica. The widespread prevalence of lipopolysaccharide and its associated taxonomic and structural variability suggest it may be a broadly employed cue for bacterially induced larval settlement of marine invertebrates. National Academy of Sciences 2022-04-25 2022-05-03 /pmc/articles/PMC9651628/ /pubmed/35467986 http://dx.doi.org/10.1073/pnas.2200795119 Text en Copyright © 2022 the Author(s). Published by PNAS https://creativecommons.org/licenses/by-nc-nd/4.0/This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) . |
spellingShingle | Biological Sciences Freckelton, Marnie L. Nedved, Brian T. Cai, You-Sheng Cao, Shugeng Turano, Helen Alegado, Rosanna A. Hadfield, Michael G. Bacterial lipopolysaccharide induces settlement and metamorphosis in a marine larva |
title | Bacterial lipopolysaccharide induces settlement and metamorphosis in a marine larva |
title_full | Bacterial lipopolysaccharide induces settlement and metamorphosis in a marine larva |
title_fullStr | Bacterial lipopolysaccharide induces settlement and metamorphosis in a marine larva |
title_full_unstemmed | Bacterial lipopolysaccharide induces settlement and metamorphosis in a marine larva |
title_short | Bacterial lipopolysaccharide induces settlement and metamorphosis in a marine larva |
title_sort | bacterial lipopolysaccharide induces settlement and metamorphosis in a marine larva |
topic | Biological Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9651628/ https://www.ncbi.nlm.nih.gov/pubmed/35467986 http://dx.doi.org/10.1073/pnas.2200795119 |
work_keys_str_mv | AT freckeltonmarniel bacteriallipopolysaccharideinducessettlementandmetamorphosisinamarinelarva AT nedvedbriant bacteriallipopolysaccharideinducessettlementandmetamorphosisinamarinelarva AT caiyousheng bacteriallipopolysaccharideinducessettlementandmetamorphosisinamarinelarva AT caoshugeng bacteriallipopolysaccharideinducessettlementandmetamorphosisinamarinelarva AT turanohelen bacteriallipopolysaccharideinducessettlementandmetamorphosisinamarinelarva AT alegadorosannaa bacteriallipopolysaccharideinducessettlementandmetamorphosisinamarinelarva AT hadfieldmichaelg bacteriallipopolysaccharideinducessettlementandmetamorphosisinamarinelarva |