Cargando…
Extended liquid state machines for speech recognition
A liquid state machine (LSM) is a biologically plausible model of a cortical microcircuit. It exists of a random, sparse reservoir of recurrently connected spiking neurons with fixed synapses and a trainable readout layer. The LSM exhibits low training complexity and enables backpropagation-free lea...
Autores principales: | Deckers, Lucas, Tsang, Ing Jyh, Van Leekwijck, Werner, Latré, Steven |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9651956/ https://www.ncbi.nlm.nih.gov/pubmed/36389242 http://dx.doi.org/10.3389/fnins.2022.1023470 |
Ejemplares similares
-
Deep Liquid State Machines With Neural Plasticity for Video Activity Recognition
por: Soures, Nicholas, et al.
Publicado: (2019) -
SpiLinC: Spiking Liquid-Ensemble Computing for Unsupervised Speech and Image Recognition
por: Srinivasan, Gopalakrishnan, et al.
Publicado: (2018) -
Analysis of Liquid Ensembles for Enhancing the Performance and Accuracy of Liquid State Machines
por: Wijesinghe, Parami, et al.
Publicado: (2019) -
Multisensory benefits for speech recognition in noisy environments
por: Oh, Yonghee, et al.
Publicado: (2022) -
Reinforcement Learning With Low-Complexity Liquid State Machines
por: Ponghiran, Wachirawit, et al.
Publicado: (2019)