Cargando…

K-80003 Inhibition of Macrophage Apoptosis and Necrotic Core Development in Atherosclerotic Vulnerable Plaques

PURPOSE: Macrophage apoptosis coupled with a defective phagocytic clearance of the apoptotic cells promotes plaque necrosis in advanced atherosclerosis, which causes acute atherothrombotic vascular disease. Nonsteroidal anti-inflammatory drug sulindac derivative K-80003 treatment was previously repo...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Xiaolei, Sun, Zhe, Yuan, Ruosen, Zhang, Weifeng, Shen, Yejiao, Yin, Anwen, Li, Yanjie, Ji, Qingqi, Wang, Xia, Li, Yi, Zhang, Min, Pan, Xin, Shen, Linghong, He, Ben
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9652240/
https://www.ncbi.nlm.nih.gov/pubmed/34410548
http://dx.doi.org/10.1007/s10557-021-07237-4
Descripción
Sumario:PURPOSE: Macrophage apoptosis coupled with a defective phagocytic clearance of the apoptotic cells promotes plaque necrosis in advanced atherosclerosis, which causes acute atherothrombotic vascular disease. Nonsteroidal anti-inflammatory drug sulindac derivative K-80003 treatment was previously reported to dramatically attenuate atherosclerotic plaque progression and destabilization. However, the underlying mechanisms are not fully understood. This study aimed to determine the role of K-80003 on macrophage apoptosis and elucidate the underlying mechanism. METHODS: The mouse model of vulnerable carotid plaque in ApoE(−/−) mice was developed in vivo. Consequently, mice were randomly grouped into two study groups: the control group and the K-80003 group (30 mg/kg/day). Samples of carotid arteries were collected to determine atherosclerotic necrotic core area, cellular apoptosis, and oxidative stress. The effects of K-80003 on RAW264.7 macrophage apoptosis, oxidative stress, and autophagic flux were also examined in vitro. RESULTS: K-80003 significantly suppressed necrotic core formation and inhibited cellular apoptosis of vulnerable plaques. K-80003 can also inhibit 7-ketocholesterol-induced macrophage apoptosis in vitro. Furthermore, K-80003 inhibited intraplaque cellular apoptosis mainly through the suppression of oxidative stress, which is a key cause of advanced lesional macrophage apoptosis. Mechanistically, K-80003 prevented 7-ketocholesterol-induced impairment of autophagic flux in macrophages, evidenced by the decreased LC3II and SQSTM1/p62 expression, GFP-RFP-LC3 cancellation upon K-80003 treatment. CONCLUSION: Inhibition of macrophage apoptosis and necrotic core formation by autophagy-mediated reduction of oxidative stress is one mechanism of the suppression of plaque progression and destabilization by K-80003.