Cargando…

Clinical Pharmacokinetics and Pharmacodynamics of Rucaparib

Rucaparib is an oral small-molecule poly(ADP-ribose) polymerase inhibitor indicated for patients with recurrent ovarian cancer in the maintenance and treatment settings and for patients with metastatic castration-resistant prostate cancer associated with a deleterious BRCA1 or BRCA2 mutation. Rucapa...

Descripción completa

Detalles Bibliográficos
Autores principales: Liao, Mingxiang, Beltman, Jeri, Giordano, Heidi, Harding, Thomas C., Maloney, Lara, Simmons, Andrew D., Xiao, Jim J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9652254/
https://www.ncbi.nlm.nih.gov/pubmed/36107395
http://dx.doi.org/10.1007/s40262-022-01157-8
Descripción
Sumario:Rucaparib is an oral small-molecule poly(ADP-ribose) polymerase inhibitor indicated for patients with recurrent ovarian cancer in the maintenance and treatment settings and for patients with metastatic castration-resistant prostate cancer associated with a deleterious BRCA1 or BRCA2 mutation. Rucaparib has a manageable safety profile; the most common adverse events reported were fatigue and nausea in both indications. Accumulation in plasma exposure occurred after repeated administration of the approved 600-mg twice-daily dosage. Steady state was achieved after continuous twice-daily dosing for a week. Rucaparib has moderate oral bioavailability and can be dosed with or without food. Although a high-fat meal weakly increased maximum concentration and area under the curve, the effect was not clinically significant. A mass balance analysis indicated almost a complete dose recovery of rucaparib over 12 days, with metabolism, renal, and hepatic excretion as the elimination routes. A population pharmacokinetic analysis of rucaparib revealed no effect of age, sex, race, or body weight. No starting dose adjustments were necessary for patients with mild-to-moderate hepatic or renal impairment; the effect of severe organ impairment on rucaparib exposure has not been evaluated. In patients, rucaparib moderately inhibited cytochrome P450 (CYP) 1A2 and weakly inhibited CYP3As, CYP2C9, and CYP2C19. Rucaparib weakly increased systemic exposures of oral contraceptives and oral rosuvastatin and marginally increased the exposure of oral digoxin (a P-glycoprotein substrate). In vitro studies suggested that rucaparib inhibits transporters MATE1, MATE2-K, OCT1, and OCT2. No clinically meaningful drug interactions with rucaparib as a perpetrator were observed. An exposure–response analysis revealed dose-dependent changes in selected clinical efficacy and safety endpoints. Overall, this article provides a comprehensive review of the clinical pharmacokinetics, pharmacodynamics, drug–drug interactions, effects of intrinsic and extrinsic factors, and exposure–response relationships of rucaparib.