Cargando…
Novel deep learning hybrid models (CNN-GRU and DLDL-RF) for the susceptibility classification of dust sources in the Middle East: a global source
Dust storms have many negative consequences, and affect all kinds of ecosystems, as well as climate and weather conditions. Therefore, classification of dust storm sources into different susceptibility categories can help us mitigate its negative effects. This study aimed to classify the susceptibil...
Autores principales: | Gholami, Hamid, Mohammadifar, Aliakbar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9652306/ https://www.ncbi.nlm.nih.gov/pubmed/36369266 http://dx.doi.org/10.1038/s41598-022-24036-5 |
Ejemplares similares
-
Interpretation of Electrocardiogram Heartbeat by CNN and GRU
por: Yao, Guoliang, et al.
Publicado: (2021) -
CNN-GRU-AM for Shared Bicycles Demand Forecasting
por: Peng, Yali, et al.
Publicado: (2021) -
Spark Analysis Based on the CNN-GRU Model for WEDM Process
por: Liu, Changhong, et al.
Publicado: (2021) -
Assessment of the uncertainty and interpretability of deep learning models for mapping soil salinity using DeepQuantreg and game theory
por: Mohammadifar, Aliakbar, et al.
Publicado: (2022) -
Deep GRU-CNN Model for COVID-19 Detection From Chest X-Rays Data
Publicado: (2021)