Cargando…
Global soil moisture data fusion by Triple Collocation Analysis from 2011 to 2018
Surface Soil Moisture (SSM) information is needed for agricultural water resource management, hydrology and climate analysis applications. Temporal and spatial sampling by the space-borne instruments designed to retrieve SSM is, however, limited by the orbit and sensors of the satellites. We produce...
Autores principales: | Xie, Qiuxia, Jia, Li, Menenti, Massimo, Hu, Guangcheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9652308/ https://www.ncbi.nlm.nih.gov/pubmed/36369298 http://dx.doi.org/10.1038/s41597-022-01772-x |
Ejemplares similares
-
Global soil moisture data derived through machine learning trained with in-situ measurements
por: O., Sungmin, et al.
Publicado: (2021) -
Collocated observations of cloud condensation nuclei, particle size distributions, and chemical composition
por: Schmale, Julia, et al.
Publicado: (2017) -
A 21-year dataset (2000–2020) of gap-free global daily surface soil moisture at 1-km grid resolution
por: Zheng, Chaolei, et al.
Publicado: (2023) -
Global long term daily 1 km surface soil moisture dataset with physics informed machine learning
por: Han, Qianqian, et al.
Publicado: (2023) -
A global daily soil moisture dataset derived from Chinese FengYun Microwave Radiation Imager (MWRI)(2010–2019)
por: Yao, Panpan, et al.
Publicado: (2023)