Cargando…

Impaired mitochondrial oxidative metabolism in skeletal progenitor cells leads to musculoskeletal disintegration

Although skeletal progenitors provide a reservoir for bone-forming osteoblasts, the major energy source for their osteogenesis remains unclear. Here, we demonstrate a requirement for mitochondrial oxidative phosphorylation in the osteogenic commitment and differentiation of skeletal progenitors. Del...

Descripción completa

Detalles Bibliográficos
Autores principales: Lin, Chujiao, Yang, Qiyuan, Guo, Dongsheng, Xie, Jun, Yang, Yeon-Suk, Chaugule, Sachin, DeSouza, Ngoc, Oh, Won-Taek, Li, Rui, Chen, Zhihao, John, Aijaz A., Qiu, Qiang, Zhu, Lihua Julie, Greenblatt, Matthew B., Ghosh, Sankar, Li, Shaoguang, Gao, Guangping, Haynes, Cole, Emerson, Charles P., Shim, Jae-Hyuck
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9652319/
https://www.ncbi.nlm.nih.gov/pubmed/36369293
http://dx.doi.org/10.1038/s41467-022-34694-8
_version_ 1784828443738767360
author Lin, Chujiao
Yang, Qiyuan
Guo, Dongsheng
Xie, Jun
Yang, Yeon-Suk
Chaugule, Sachin
DeSouza, Ngoc
Oh, Won-Taek
Li, Rui
Chen, Zhihao
John, Aijaz A.
Qiu, Qiang
Zhu, Lihua Julie
Greenblatt, Matthew B.
Ghosh, Sankar
Li, Shaoguang
Gao, Guangping
Haynes, Cole
Emerson, Charles P.
Shim, Jae-Hyuck
author_facet Lin, Chujiao
Yang, Qiyuan
Guo, Dongsheng
Xie, Jun
Yang, Yeon-Suk
Chaugule, Sachin
DeSouza, Ngoc
Oh, Won-Taek
Li, Rui
Chen, Zhihao
John, Aijaz A.
Qiu, Qiang
Zhu, Lihua Julie
Greenblatt, Matthew B.
Ghosh, Sankar
Li, Shaoguang
Gao, Guangping
Haynes, Cole
Emerson, Charles P.
Shim, Jae-Hyuck
author_sort Lin, Chujiao
collection PubMed
description Although skeletal progenitors provide a reservoir for bone-forming osteoblasts, the major energy source for their osteogenesis remains unclear. Here, we demonstrate a requirement for mitochondrial oxidative phosphorylation in the osteogenic commitment and differentiation of skeletal progenitors. Deletion of Evolutionarily Conserved Signaling Intermediate in Toll pathways (ECSIT) in skeletal progenitors hinders bone formation and regeneration, resulting in skeletal deformity, defects in the bone marrow niche and spontaneous fractures followed by persistent nonunion. Upon skeletal fracture, Ecsit-deficient skeletal progenitors migrate to adjacent skeletal muscle causing muscle atrophy. These phenotypes are intrinsic to ECSIT function in skeletal progenitors, as little skeletal abnormalities were observed in mice lacking Ecsit in committed osteoprogenitors or mature osteoblasts. Mechanistically, Ecsit deletion in skeletal progenitors impairs mitochondrial complex assembly and mitochondrial oxidative phosphorylation and elevates glycolysis. ECSIT-associated skeletal phenotypes were reversed by in vivo reconstitution with wild-type ECSIT expression, but not a mutant displaying defective mitochondrial localization. Collectively, these findings identify mitochondrial oxidative phosphorylation as the prominent energy-driving force for osteogenesis of skeletal progenitors, governing musculoskeletal integrity.
format Online
Article
Text
id pubmed-9652319
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-96523192022-11-15 Impaired mitochondrial oxidative metabolism in skeletal progenitor cells leads to musculoskeletal disintegration Lin, Chujiao Yang, Qiyuan Guo, Dongsheng Xie, Jun Yang, Yeon-Suk Chaugule, Sachin DeSouza, Ngoc Oh, Won-Taek Li, Rui Chen, Zhihao John, Aijaz A. Qiu, Qiang Zhu, Lihua Julie Greenblatt, Matthew B. Ghosh, Sankar Li, Shaoguang Gao, Guangping Haynes, Cole Emerson, Charles P. Shim, Jae-Hyuck Nat Commun Article Although skeletal progenitors provide a reservoir for bone-forming osteoblasts, the major energy source for their osteogenesis remains unclear. Here, we demonstrate a requirement for mitochondrial oxidative phosphorylation in the osteogenic commitment and differentiation of skeletal progenitors. Deletion of Evolutionarily Conserved Signaling Intermediate in Toll pathways (ECSIT) in skeletal progenitors hinders bone formation and regeneration, resulting in skeletal deformity, defects in the bone marrow niche and spontaneous fractures followed by persistent nonunion. Upon skeletal fracture, Ecsit-deficient skeletal progenitors migrate to adjacent skeletal muscle causing muscle atrophy. These phenotypes are intrinsic to ECSIT function in skeletal progenitors, as little skeletal abnormalities were observed in mice lacking Ecsit in committed osteoprogenitors or mature osteoblasts. Mechanistically, Ecsit deletion in skeletal progenitors impairs mitochondrial complex assembly and mitochondrial oxidative phosphorylation and elevates glycolysis. ECSIT-associated skeletal phenotypes were reversed by in vivo reconstitution with wild-type ECSIT expression, but not a mutant displaying defective mitochondrial localization. Collectively, these findings identify mitochondrial oxidative phosphorylation as the prominent energy-driving force for osteogenesis of skeletal progenitors, governing musculoskeletal integrity. Nature Publishing Group UK 2022-11-11 /pmc/articles/PMC9652319/ /pubmed/36369293 http://dx.doi.org/10.1038/s41467-022-34694-8 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Lin, Chujiao
Yang, Qiyuan
Guo, Dongsheng
Xie, Jun
Yang, Yeon-Suk
Chaugule, Sachin
DeSouza, Ngoc
Oh, Won-Taek
Li, Rui
Chen, Zhihao
John, Aijaz A.
Qiu, Qiang
Zhu, Lihua Julie
Greenblatt, Matthew B.
Ghosh, Sankar
Li, Shaoguang
Gao, Guangping
Haynes, Cole
Emerson, Charles P.
Shim, Jae-Hyuck
Impaired mitochondrial oxidative metabolism in skeletal progenitor cells leads to musculoskeletal disintegration
title Impaired mitochondrial oxidative metabolism in skeletal progenitor cells leads to musculoskeletal disintegration
title_full Impaired mitochondrial oxidative metabolism in skeletal progenitor cells leads to musculoskeletal disintegration
title_fullStr Impaired mitochondrial oxidative metabolism in skeletal progenitor cells leads to musculoskeletal disintegration
title_full_unstemmed Impaired mitochondrial oxidative metabolism in skeletal progenitor cells leads to musculoskeletal disintegration
title_short Impaired mitochondrial oxidative metabolism in skeletal progenitor cells leads to musculoskeletal disintegration
title_sort impaired mitochondrial oxidative metabolism in skeletal progenitor cells leads to musculoskeletal disintegration
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9652319/
https://www.ncbi.nlm.nih.gov/pubmed/36369293
http://dx.doi.org/10.1038/s41467-022-34694-8
work_keys_str_mv AT linchujiao impairedmitochondrialoxidativemetabolisminskeletalprogenitorcellsleadstomusculoskeletaldisintegration
AT yangqiyuan impairedmitochondrialoxidativemetabolisminskeletalprogenitorcellsleadstomusculoskeletaldisintegration
AT guodongsheng impairedmitochondrialoxidativemetabolisminskeletalprogenitorcellsleadstomusculoskeletaldisintegration
AT xiejun impairedmitochondrialoxidativemetabolisminskeletalprogenitorcellsleadstomusculoskeletaldisintegration
AT yangyeonsuk impairedmitochondrialoxidativemetabolisminskeletalprogenitorcellsleadstomusculoskeletaldisintegration
AT chaugulesachin impairedmitochondrialoxidativemetabolisminskeletalprogenitorcellsleadstomusculoskeletaldisintegration
AT desouzangoc impairedmitochondrialoxidativemetabolisminskeletalprogenitorcellsleadstomusculoskeletaldisintegration
AT ohwontaek impairedmitochondrialoxidativemetabolisminskeletalprogenitorcellsleadstomusculoskeletaldisintegration
AT lirui impairedmitochondrialoxidativemetabolisminskeletalprogenitorcellsleadstomusculoskeletaldisintegration
AT chenzhihao impairedmitochondrialoxidativemetabolisminskeletalprogenitorcellsleadstomusculoskeletaldisintegration
AT johnaijaza impairedmitochondrialoxidativemetabolisminskeletalprogenitorcellsleadstomusculoskeletaldisintegration
AT qiuqiang impairedmitochondrialoxidativemetabolisminskeletalprogenitorcellsleadstomusculoskeletaldisintegration
AT zhulihuajulie impairedmitochondrialoxidativemetabolisminskeletalprogenitorcellsleadstomusculoskeletaldisintegration
AT greenblattmatthewb impairedmitochondrialoxidativemetabolisminskeletalprogenitorcellsleadstomusculoskeletaldisintegration
AT ghoshsankar impairedmitochondrialoxidativemetabolisminskeletalprogenitorcellsleadstomusculoskeletaldisintegration
AT lishaoguang impairedmitochondrialoxidativemetabolisminskeletalprogenitorcellsleadstomusculoskeletaldisintegration
AT gaoguangping impairedmitochondrialoxidativemetabolisminskeletalprogenitorcellsleadstomusculoskeletaldisintegration
AT haynescole impairedmitochondrialoxidativemetabolisminskeletalprogenitorcellsleadstomusculoskeletaldisintegration
AT emersoncharlesp impairedmitochondrialoxidativemetabolisminskeletalprogenitorcellsleadstomusculoskeletaldisintegration
AT shimjaehyuck impairedmitochondrialoxidativemetabolisminskeletalprogenitorcellsleadstomusculoskeletaldisintegration