Cargando…
Impaired mitochondrial oxidative metabolism in skeletal progenitor cells leads to musculoskeletal disintegration
Although skeletal progenitors provide a reservoir for bone-forming osteoblasts, the major energy source for their osteogenesis remains unclear. Here, we demonstrate a requirement for mitochondrial oxidative phosphorylation in the osteogenic commitment and differentiation of skeletal progenitors. Del...
Autores principales: | , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9652319/ https://www.ncbi.nlm.nih.gov/pubmed/36369293 http://dx.doi.org/10.1038/s41467-022-34694-8 |
_version_ | 1784828443738767360 |
---|---|
author | Lin, Chujiao Yang, Qiyuan Guo, Dongsheng Xie, Jun Yang, Yeon-Suk Chaugule, Sachin DeSouza, Ngoc Oh, Won-Taek Li, Rui Chen, Zhihao John, Aijaz A. Qiu, Qiang Zhu, Lihua Julie Greenblatt, Matthew B. Ghosh, Sankar Li, Shaoguang Gao, Guangping Haynes, Cole Emerson, Charles P. Shim, Jae-Hyuck |
author_facet | Lin, Chujiao Yang, Qiyuan Guo, Dongsheng Xie, Jun Yang, Yeon-Suk Chaugule, Sachin DeSouza, Ngoc Oh, Won-Taek Li, Rui Chen, Zhihao John, Aijaz A. Qiu, Qiang Zhu, Lihua Julie Greenblatt, Matthew B. Ghosh, Sankar Li, Shaoguang Gao, Guangping Haynes, Cole Emerson, Charles P. Shim, Jae-Hyuck |
author_sort | Lin, Chujiao |
collection | PubMed |
description | Although skeletal progenitors provide a reservoir for bone-forming osteoblasts, the major energy source for their osteogenesis remains unclear. Here, we demonstrate a requirement for mitochondrial oxidative phosphorylation in the osteogenic commitment and differentiation of skeletal progenitors. Deletion of Evolutionarily Conserved Signaling Intermediate in Toll pathways (ECSIT) in skeletal progenitors hinders bone formation and regeneration, resulting in skeletal deformity, defects in the bone marrow niche and spontaneous fractures followed by persistent nonunion. Upon skeletal fracture, Ecsit-deficient skeletal progenitors migrate to adjacent skeletal muscle causing muscle atrophy. These phenotypes are intrinsic to ECSIT function in skeletal progenitors, as little skeletal abnormalities were observed in mice lacking Ecsit in committed osteoprogenitors or mature osteoblasts. Mechanistically, Ecsit deletion in skeletal progenitors impairs mitochondrial complex assembly and mitochondrial oxidative phosphorylation and elevates glycolysis. ECSIT-associated skeletal phenotypes were reversed by in vivo reconstitution with wild-type ECSIT expression, but not a mutant displaying defective mitochondrial localization. Collectively, these findings identify mitochondrial oxidative phosphorylation as the prominent energy-driving force for osteogenesis of skeletal progenitors, governing musculoskeletal integrity. |
format | Online Article Text |
id | pubmed-9652319 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-96523192022-11-15 Impaired mitochondrial oxidative metabolism in skeletal progenitor cells leads to musculoskeletal disintegration Lin, Chujiao Yang, Qiyuan Guo, Dongsheng Xie, Jun Yang, Yeon-Suk Chaugule, Sachin DeSouza, Ngoc Oh, Won-Taek Li, Rui Chen, Zhihao John, Aijaz A. Qiu, Qiang Zhu, Lihua Julie Greenblatt, Matthew B. Ghosh, Sankar Li, Shaoguang Gao, Guangping Haynes, Cole Emerson, Charles P. Shim, Jae-Hyuck Nat Commun Article Although skeletal progenitors provide a reservoir for bone-forming osteoblasts, the major energy source for their osteogenesis remains unclear. Here, we demonstrate a requirement for mitochondrial oxidative phosphorylation in the osteogenic commitment and differentiation of skeletal progenitors. Deletion of Evolutionarily Conserved Signaling Intermediate in Toll pathways (ECSIT) in skeletal progenitors hinders bone formation and regeneration, resulting in skeletal deformity, defects in the bone marrow niche and spontaneous fractures followed by persistent nonunion. Upon skeletal fracture, Ecsit-deficient skeletal progenitors migrate to adjacent skeletal muscle causing muscle atrophy. These phenotypes are intrinsic to ECSIT function in skeletal progenitors, as little skeletal abnormalities were observed in mice lacking Ecsit in committed osteoprogenitors or mature osteoblasts. Mechanistically, Ecsit deletion in skeletal progenitors impairs mitochondrial complex assembly and mitochondrial oxidative phosphorylation and elevates glycolysis. ECSIT-associated skeletal phenotypes were reversed by in vivo reconstitution with wild-type ECSIT expression, but not a mutant displaying defective mitochondrial localization. Collectively, these findings identify mitochondrial oxidative phosphorylation as the prominent energy-driving force for osteogenesis of skeletal progenitors, governing musculoskeletal integrity. Nature Publishing Group UK 2022-11-11 /pmc/articles/PMC9652319/ /pubmed/36369293 http://dx.doi.org/10.1038/s41467-022-34694-8 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Lin, Chujiao Yang, Qiyuan Guo, Dongsheng Xie, Jun Yang, Yeon-Suk Chaugule, Sachin DeSouza, Ngoc Oh, Won-Taek Li, Rui Chen, Zhihao John, Aijaz A. Qiu, Qiang Zhu, Lihua Julie Greenblatt, Matthew B. Ghosh, Sankar Li, Shaoguang Gao, Guangping Haynes, Cole Emerson, Charles P. Shim, Jae-Hyuck Impaired mitochondrial oxidative metabolism in skeletal progenitor cells leads to musculoskeletal disintegration |
title | Impaired mitochondrial oxidative metabolism in skeletal progenitor cells leads to musculoskeletal disintegration |
title_full | Impaired mitochondrial oxidative metabolism in skeletal progenitor cells leads to musculoskeletal disintegration |
title_fullStr | Impaired mitochondrial oxidative metabolism in skeletal progenitor cells leads to musculoskeletal disintegration |
title_full_unstemmed | Impaired mitochondrial oxidative metabolism in skeletal progenitor cells leads to musculoskeletal disintegration |
title_short | Impaired mitochondrial oxidative metabolism in skeletal progenitor cells leads to musculoskeletal disintegration |
title_sort | impaired mitochondrial oxidative metabolism in skeletal progenitor cells leads to musculoskeletal disintegration |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9652319/ https://www.ncbi.nlm.nih.gov/pubmed/36369293 http://dx.doi.org/10.1038/s41467-022-34694-8 |
work_keys_str_mv | AT linchujiao impairedmitochondrialoxidativemetabolisminskeletalprogenitorcellsleadstomusculoskeletaldisintegration AT yangqiyuan impairedmitochondrialoxidativemetabolisminskeletalprogenitorcellsleadstomusculoskeletaldisintegration AT guodongsheng impairedmitochondrialoxidativemetabolisminskeletalprogenitorcellsleadstomusculoskeletaldisintegration AT xiejun impairedmitochondrialoxidativemetabolisminskeletalprogenitorcellsleadstomusculoskeletaldisintegration AT yangyeonsuk impairedmitochondrialoxidativemetabolisminskeletalprogenitorcellsleadstomusculoskeletaldisintegration AT chaugulesachin impairedmitochondrialoxidativemetabolisminskeletalprogenitorcellsleadstomusculoskeletaldisintegration AT desouzangoc impairedmitochondrialoxidativemetabolisminskeletalprogenitorcellsleadstomusculoskeletaldisintegration AT ohwontaek impairedmitochondrialoxidativemetabolisminskeletalprogenitorcellsleadstomusculoskeletaldisintegration AT lirui impairedmitochondrialoxidativemetabolisminskeletalprogenitorcellsleadstomusculoskeletaldisintegration AT chenzhihao impairedmitochondrialoxidativemetabolisminskeletalprogenitorcellsleadstomusculoskeletaldisintegration AT johnaijaza impairedmitochondrialoxidativemetabolisminskeletalprogenitorcellsleadstomusculoskeletaldisintegration AT qiuqiang impairedmitochondrialoxidativemetabolisminskeletalprogenitorcellsleadstomusculoskeletaldisintegration AT zhulihuajulie impairedmitochondrialoxidativemetabolisminskeletalprogenitorcellsleadstomusculoskeletaldisintegration AT greenblattmatthewb impairedmitochondrialoxidativemetabolisminskeletalprogenitorcellsleadstomusculoskeletaldisintegration AT ghoshsankar impairedmitochondrialoxidativemetabolisminskeletalprogenitorcellsleadstomusculoskeletaldisintegration AT lishaoguang impairedmitochondrialoxidativemetabolisminskeletalprogenitorcellsleadstomusculoskeletaldisintegration AT gaoguangping impairedmitochondrialoxidativemetabolisminskeletalprogenitorcellsleadstomusculoskeletaldisintegration AT haynescole impairedmitochondrialoxidativemetabolisminskeletalprogenitorcellsleadstomusculoskeletaldisintegration AT emersoncharlesp impairedmitochondrialoxidativemetabolisminskeletalprogenitorcellsleadstomusculoskeletaldisintegration AT shimjaehyuck impairedmitochondrialoxidativemetabolisminskeletalprogenitorcellsleadstomusculoskeletaldisintegration |