Cargando…
Harnessing interpretable machine learning for holistic inverse design of origami
This work harnesses interpretable machine learning methods to address the challenging inverse design problem of origami-inspired systems. We established a work flow based on decision tree-random forest method to fit origami databases, containing both design features and functional performance, and t...
Autores principales: | Zhu, Yi, Filipov, Evgueni T. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9652322/ https://www.ncbi.nlm.nih.gov/pubmed/36369348 http://dx.doi.org/10.1038/s41598-022-23875-6 |
Ejemplares similares
-
Tackling Photonic Inverse Design with Machine Learning
por: Liu, Zhaocheng, et al.
Publicado: (2021) -
Inverse Design of Materials by Machine Learning
por: Wang, Jia, et al.
Publicado: (2022) -
Harnessing the potential of machine learning for advancing “Quality by Design” in biomanufacturing
por: Walsh, Ian, et al.
Publicado: (2022) -
Machine‐Learning Microstructure for Inverse Material Design
por: Pei, Zongrui, et al.
Publicado: (2021) -
Inverse design of 3D reconfigurable curvilinear modular origami structures using geometric and topological reconstructions
por: Xiao, Kai, et al.
Publicado: (2022)