Cargando…
An open-source LED array illumination system for automated multiwell plate cell culture photodynamic therapy experiments
Photodynamic therapy (PDT) research would benefit from an automated, low-cost, and easy-to-use cell culture light treatment setup capable of illuminating multiple well replicates within standard multiwell plate formats. We present an LED-array suitable for performing high-throughput cell culture PDT...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9652332/ https://www.ncbi.nlm.nih.gov/pubmed/36369334 http://dx.doi.org/10.1038/s41598-022-22020-7 |
Sumario: | Photodynamic therapy (PDT) research would benefit from an automated, low-cost, and easy-to-use cell culture light treatment setup capable of illuminating multiple well replicates within standard multiwell plate formats. We present an LED-array suitable for performing high-throughput cell culture PDT experiments. The setup features a water-cooling loop to keep the LED-array temperature nearly constant, thus stabilizing the output power and spectrum. The setup also features two custom-made actuator arms, in combination with a pulse-width-modulation (PWM) technique, to achieve programmable and automatic light exposures for PDT. The setup operates at ~ 690 nm (676–702 nm, spectral output full-width half-maximum) and the array module can be readily adapted to other LED wavelengths. This system provides an illumination field with adjustable irradiance up to 400 mW/cm(2) with relatively high spectral and power stability comparing with previously reported LED-based setups. The light doses provided by the LED array were validated with comparison to traditional laser PDT. This open-source illumination platform (including the detailed technical description, fabrication protocols, and parts list provided here) helps to make custom light sources more accessible and of practical use for photomedicine research. |
---|