Cargando…
Optimised extreme gradient boosting model for short term electric load demand forecasting of regional grid system
Load forecast provides effective and reliable guidance for power construction and grid operation. It is essential for the power utility to forecast the exact in-future coming energy demand. Advanced machine learning methods can support competently for load forecasting, and extreme gradient boosting...
Autores principales: | Qinghe, Zhao, Wen, Xiang, Boyan, Huang, Jong, Wang, Junlong, Fang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9652386/ https://www.ncbi.nlm.nih.gov/pubmed/36369324 http://dx.doi.org/10.1038/s41598-022-22024-3 |
Ejemplares similares
-
Electricity Load and Price Forecasting Using Jaya-Long Short Term Memory (JLSTM) in Smart Grids
por: Khalid, Rabiya, et al.
Publicado: (2019) -
Deterioration of Electrical Load Forecasting Models in a Smart Grid Environment
por: Azeem, Abdul, et al.
Publicado: (2022) -
An Insight of Deep Learning Based Demand Forecasting in Smart Grids
por: Aguiar-Pérez, Javier Manuel, et al.
Publicado: (2023) -
Forecasted datasets of electric vehicle consumption on the electricity grid of Spain
por: Cama-Pinto, Dora, et al.
Publicado: (2020) -
Wavelet LSTM for Fault Forecasting in Electrical Power Grids
por: Branco, Nathielle Waldrigues, et al.
Publicado: (2022)