Cargando…
A novel missense mutation in GREB1L identified in a three-generation family with renal hypodysplasia/aplasia-3
BACKGROUND: Renal hypodysplasia/aplasia-3 (RHDA3), as the most severe end of the spectrum of congenital anomalies of the kidney and urinary tract, is mainly caused by mutations in GREB1L. However, the mutations in GREB1L identified to date only explain a limited proportion of RHDA3 cases, and the me...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9652819/ https://www.ncbi.nlm.nih.gov/pubmed/36371238 http://dx.doi.org/10.1186/s13023-022-02553-w |
Sumario: | BACKGROUND: Renal hypodysplasia/aplasia-3 (RHDA3), as the most severe end of the spectrum of congenital anomalies of the kidney and urinary tract, is mainly caused by mutations in GREB1L. However, the mutations in GREB1L identified to date only explain a limited proportion of RHDA3 cases, and the mechanism of GREB1L mutations causing RHDA3 is unclear. RESULTS: According to whole-exome sequencing, a three-generation family suffering from RHDA3 was investigated with a novel missense mutation in GREB1L, c.4507C>T. All three-generation patients suffered from unilateral absent kidney. This missense mutation resulted in sharp downregulation of mRNA and protein expression, which might lead to RHDA3. Mechanistically, through RNA-sequencing, it was found that the mRNA levels of PAX2 and PTH1R, which are key molecules involved in the development of the kidney, were significantly downregulated by knocking out GREB1L in vitro. CONCLUSIONS: This novel missense mutation in GREB1L can be helpful in the genetic diagnosis of RHDA3, and the discovery of the potential mechanism that GREB1L mutations involved in RHDA3 pathogenesis can promote the adoption of optimal treatment measures and the development of personalized medicine directly targeting these effects. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13023-022-02553-w. |
---|