Cargando…
Machine learning techniques on homological persistence features for prostate cancer diagnosis
The rapid evolution of image processing equipment and techniques ensures the development of novel picture analysis methodologies. One of the most powerful yet computationally possible algebraic techniques for measuring the topological characteristics of functions is persistent homology. It's an...
Autores principales: | Rammal, Abbas, Assaf, Rabih, Goupil, Alban, Kacim, Mohammad, Vrabie, Valeriu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9652917/ https://www.ncbi.nlm.nih.gov/pubmed/36371184 http://dx.doi.org/10.1186/s12859-022-04992-5 |
Ejemplares similares
-
Persistent Homology for the Quantitative Evaluation of Architectural Features in Prostate Cancer Histology
por: Lawson, Peter, et al.
Publicado: (2019) -
Representation of molecular structures with persistent homology for machine learning applications in chemistry
por: Townsend, Jacob, et al.
Publicado: (2020) -
Weighted-persistent-homology-based machine learning for RNA flexibility analysis
por: Pun, Chi Seng, et al.
Publicado: (2020) -
Root cause prediction for failures in semiconductor industry, a genetic algorithm–machine learning approach
por: Rammal, Abbas, et al.
Publicado: (2023) -
Author Correction: Representation of molecular structures with persistent homology for machine learning applications in chemistry
por: Townsend, Jacob, et al.
Publicado: (2020)