Cargando…
Automatic segmentation of the gross target volume in radiotherapy for lung cancer using transresSEUnet 2.5D Network
OBJECTIVE: This paper intends to propose a method of using TransResSEUnet2.5D network for accurate automatic segmentation of the Gross Target Volume (GTV) in Radiotherapy for lung cancer. METHODS: A total of 11,370 computed tomograms (CT), deriving from 137 cases, of lung cancer patients under radio...
Autores principales: | Xie, Hui, Chen, Zijie, Deng, Jincheng, Zhang, Jianfang, Duan, Hanping, Li, Qing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9652981/ https://www.ncbi.nlm.nih.gov/pubmed/36371220 http://dx.doi.org/10.1186/s12967-022-03732-w |
Ejemplares similares
-
SeUneter: Channel attentive U-Net for instance segmentation of the cervical spine MRI medical image
por: Zhang, Xiang, et al.
Publicado: (2022) -
Deep Learning for Per-Fraction Automatic Segmentation of Gross Tumor Volume (GTV) and Organs at Risk (OARs) in Adaptive Radiotherapy of Cervical Cancer
por: Breto, Adrian L., et al.
Publicado: (2022) -
Gross Tumor Volume Segmentation for Stage III NSCLC Radiotherapy
Using 3D ResSE-Unet
por: Yu, Xinhao, et al.
Publicado: (2022) -
Prevention of gross setup errors in radiotherapy with an efficient automatic patient safety system
por: Yan, Guanghua, et al.
Publicado: (2013) -
Automatic Segmentation of the Gross Target Volume in Non-Small Cell
Lung Cancer Using a Modified Version of ResNet
por: Zhang, Fuli, et al.
Publicado: (2020)