Cargando…
Obstructive Sleep Apnea Detection Based on Sleep Sounds via Deep Learning
PURPOSE: This study aimed to propose a novel deep-learning method for automatic sleep apneic event detection and thus to estimate the apnea hypopnea index (AHI) and identify obstructive sleep apnea (OSA) in an event-by-event manner solely based on sleep sounds obtained by a noncontact audio recorder...
Autores principales: | Wang, Bochun, Tang, Xianwen, Ai, Hao, Li, Yanru, Xu, Wen, Wang, Xingjun, Han, Demin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9653035/ https://www.ncbi.nlm.nih.gov/pubmed/36394068 http://dx.doi.org/10.2147/NSS.S373367 |
Ejemplares similares
-
Prediction of obstructive sleep apnea using deep learning in 3D craniofacial reconstruction
por: Zhang, Zishanbai, et al.
Publicado: (2022) -
Using clinical data to predict obstructive sleep apnea
por: He, Shuai, et al.
Publicado: (2022) -
Clinical Characteristics Combined with Craniofacial Photographic Analysis in Children with Obstructive Sleep Apnea
por: Wang, Huijun, et al.
Publicado: (2023) -
Sleep Apnea Detection by Tracheal Motion and Sound, and Oximetry via Application of Deep Neural Networks
por: Montazeri Ghahjaverestan, Nasim, et al.
Publicado: (2023) -
Efficient Deep Learning Based Hybrid Model to Detect Obstructive Sleep Apnea
por: Hemrajani, Prashant, et al.
Publicado: (2023)