Cargando…
Evolutionary Kuramoto dynamics
Biological systems have a variety of time-keeping mechanisms ranging from molecular clocks within cells to a complex interconnected unit across an entire organism. The suprachiasmatic nucleus, comprising interconnected oscillatory neurons, serves as a master-clock in mammals. The ubiquity of such sy...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9653234/ https://www.ncbi.nlm.nih.gov/pubmed/36350204 http://dx.doi.org/10.1098/rspb.2022.0999 |
_version_ | 1784828641464549376 |
---|---|
author | Tripp, Elizabeth A. Fu, Feng Pauls, Scott D. |
author_facet | Tripp, Elizabeth A. Fu, Feng Pauls, Scott D. |
author_sort | Tripp, Elizabeth A. |
collection | PubMed |
description | Biological systems have a variety of time-keeping mechanisms ranging from molecular clocks within cells to a complex interconnected unit across an entire organism. The suprachiasmatic nucleus, comprising interconnected oscillatory neurons, serves as a master-clock in mammals. The ubiquity of such systems indicates an evolutionary benefit that outweighs the cost of establishing and maintaining them, but little is known about the process of evolutionary development. To begin to address this shortfall, we introduce and analyse a new evolutionary game theoretic framework modelling the behaviour and evolution of systems of coupled oscillators. Each oscillator is characterized by a pair of dynamic behavioural dimensions, a phase and a communication strategy, along which evolution occurs. We measure success of mutations by comparing the benefit of synchronization balanced against the cost of connections between the oscillators. Despite the simple set-up, this model exhibits non-trivial behaviours mimicking several different classical games—the Prisoner’s Dilemma, snowdrift games, coordination games—as the landscape of the oscillators changes over time. Across many situations, we find a surprisingly simple characterization of synchronization through connectivity and communication: if the benefit of synchronization is greater than twice the cost, the system will evolve towards complete communication and phase synchronization. |
format | Online Article Text |
id | pubmed-9653234 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | The Royal Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-96532342022-11-22 Evolutionary Kuramoto dynamics Tripp, Elizabeth A. Fu, Feng Pauls, Scott D. Proc Biol Sci Evolution Biological systems have a variety of time-keeping mechanisms ranging from molecular clocks within cells to a complex interconnected unit across an entire organism. The suprachiasmatic nucleus, comprising interconnected oscillatory neurons, serves as a master-clock in mammals. The ubiquity of such systems indicates an evolutionary benefit that outweighs the cost of establishing and maintaining them, but little is known about the process of evolutionary development. To begin to address this shortfall, we introduce and analyse a new evolutionary game theoretic framework modelling the behaviour and evolution of systems of coupled oscillators. Each oscillator is characterized by a pair of dynamic behavioural dimensions, a phase and a communication strategy, along which evolution occurs. We measure success of mutations by comparing the benefit of synchronization balanced against the cost of connections between the oscillators. Despite the simple set-up, this model exhibits non-trivial behaviours mimicking several different classical games—the Prisoner’s Dilemma, snowdrift games, coordination games—as the landscape of the oscillators changes over time. Across many situations, we find a surprisingly simple characterization of synchronization through connectivity and communication: if the benefit of synchronization is greater than twice the cost, the system will evolve towards complete communication and phase synchronization. The Royal Society 2022-11-09 2022-11-09 /pmc/articles/PMC9653234/ /pubmed/36350204 http://dx.doi.org/10.1098/rspb.2022.0999 Text en © 2022 The Authors. https://creativecommons.org/licenses/by/4.0/Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, provided the original author and source are credited. |
spellingShingle | Evolution Tripp, Elizabeth A. Fu, Feng Pauls, Scott D. Evolutionary Kuramoto dynamics |
title | Evolutionary Kuramoto dynamics |
title_full | Evolutionary Kuramoto dynamics |
title_fullStr | Evolutionary Kuramoto dynamics |
title_full_unstemmed | Evolutionary Kuramoto dynamics |
title_short | Evolutionary Kuramoto dynamics |
title_sort | evolutionary kuramoto dynamics |
topic | Evolution |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9653234/ https://www.ncbi.nlm.nih.gov/pubmed/36350204 http://dx.doi.org/10.1098/rspb.2022.0999 |
work_keys_str_mv | AT trippelizabetha evolutionarykuramotodynamics AT fufeng evolutionarykuramotodynamics AT paulsscottd evolutionarykuramotodynamics |