Cargando…
Quadrature-free immersed isogeometric analysis
This paper presents a novel method for solving partial differential equations on three-dimensional CAD geometries by means of immersed isogeometric discretizations that do not require quadrature schemes. It relies on a newly developed technique for the evaluation of polynomial integrals over spline...
Autores principales: | Antolin, P., Hirschler, T. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer London
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9653347/ https://www.ncbi.nlm.nih.gov/pubmed/36397879 http://dx.doi.org/10.1007/s00366-022-01644-3 |
Ejemplares similares
-
Fast and multiscale formation of isogeometric matrices of microstructured geometric models
por: Hirschler, T., et al.
Publicado: (2021) -
Immersed boundary-conformal isogeometric method for linear elliptic problems
por: Wei, Xiaodong, et al.
Publicado: (2021) -
Multigrid methods for isogeometric discretization
por: Gahalaut, K.P.S., et al.
Publicado: (2013) -
Mathematical Foundations of Adaptive Isogeometric Analysis
por: Buffa, Annalisa, et al.
Publicado: (2022) -
IETI – Isogeometric Tearing and Interconnecting
por: Kleiss, Stefan K., et al.
Publicado: (2012)