Cargando…
The ImSURE phantoms: a digital dataset for radiomic software benchmarking and investigation
In radiology and oncology, radiomic models are increasingly employed to predict clinical outcomes, but their clinical deployment has been hampered by lack of standardisation. This hindrance has driven the international Image Biomarker Standardisation Initiative (IBSI) to define guidelines for image...
Autores principales: | Bettinelli, Andrea, Marturano, Francesca, Sarnelli, Anna, Bertoldo, Alessandra, Paiusco, Marta |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9653377/ https://www.ncbi.nlm.nih.gov/pubmed/36371503 http://dx.doi.org/10.1038/s41597-022-01715-6 |
Ejemplares similares
-
Radiomics and deep learning methods for the prediction of 2-year overall survival in LUNG1 dataset
por: Braghetto, Anna, et al.
Publicado: (2022) -
Author Correction: Radiomics and deep learning methods for the prediction of 2-year overall survival in LUNG1 dataset
por: Braghetto, Anna, et al.
Publicado: (2023) -
A benchmark dataset for Hydrogen Combustion
por: Guan, Xingyi, et al.
Publicado: (2022) -
A benchmark dataset for machine learning in ecotoxicology
por: Schür, Christoph, et al.
Publicado: (2023) -
A benchmark dataset of protein antigens for antigenicity measurement
por: Qiu, Tianyi, et al.
Publicado: (2020)