Cargando…
CLIMB: High-dimensional association detection in large scale genomic data
Joint analyses of genomic datasets obtained in multiple different conditions are essential for understanding the biological mechanism that drives tissue-specificity and cell differentiation, but they still remain computationally challenging. To address this we introduce CLIMB (Composite LIkelihood e...
Autores principales: | Koch, Hillary, Keller, Cheryl A., Xiang, Guanjue, Giardine, Belinda, Zhang, Feipeng, Wang, Yicheng, Hardison, Ross C., Li, Qunhua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9653391/ https://www.ncbi.nlm.nih.gov/pubmed/36371401 http://dx.doi.org/10.1038/s41467-022-34360-z |
Ejemplares similares
-
S3norm: simultaneous normalization of sequencing depth and signal-to-noise ratio in epigenomic data
por: Xiang, Guanjue, et al.
Publicado: (2020) -
S3V2-IDEAS: a package for normalizing, denoising and integrating epigenomic datasets across different cell types
por: Xiang, Guanjue, et al.
Publicado: (2021) -
Snapshot: a package for clustering and visualizing epigenetic history during cell differentiation
por: Xiang, Guanjue, et al.
Publicado: (2023) -
OnTAD: hierarchical domain structure reveals the divergence of activity among TADs and boundaries
por: An, Lin, et al.
Publicado: (2019) -
Systematic integration of GATA transcription factors and epigenomes via IDEAS paints the regulatory landscape of hematopoietic cells
por: Hardison, Ross C., et al.
Publicado: (2019)