Cargando…

Unimon qubit

Superconducting qubits seem promising for useful quantum computers, but the currently wide-spread qubit designs and techniques do not yet provide high enough performance. Here, we introduce a superconducting-qubit type, the unimon, which combines the desired properties of increased anharmonicity, fu...

Descripción completa

Detalles Bibliográficos
Autores principales: Hyyppä, Eric, Kundu, Suman, Chan, Chun Fai, Gunyhó, András, Hotari, Juho, Janzso, David, Juliusson, Kristinn, Kiuru, Olavi, Kotilahti, Janne, Landra, Alessandro, Liu, Wei, Marxer, Fabian, Mäkinen, Akseli, Orgiazzi, Jean-Luc, Palma, Mario, Savytskyi, Mykhailo, Tosto, Francesca, Tuorila, Jani, Vadimov, Vasilii, Li, Tianyi, Ockeloen-Korppi, Caspar, Heinsoo, Johannes, Tan, Kuan Yen, Hassel, Juha, Möttönen, Mikko
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9653402/
https://www.ncbi.nlm.nih.gov/pubmed/36371435
http://dx.doi.org/10.1038/s41467-022-34614-w
_version_ 1784828674559705088
author Hyyppä, Eric
Kundu, Suman
Chan, Chun Fai
Gunyhó, András
Hotari, Juho
Janzso, David
Juliusson, Kristinn
Kiuru, Olavi
Kotilahti, Janne
Landra, Alessandro
Liu, Wei
Marxer, Fabian
Mäkinen, Akseli
Orgiazzi, Jean-Luc
Palma, Mario
Savytskyi, Mykhailo
Tosto, Francesca
Tuorila, Jani
Vadimov, Vasilii
Li, Tianyi
Ockeloen-Korppi, Caspar
Heinsoo, Johannes
Tan, Kuan Yen
Hassel, Juha
Möttönen, Mikko
author_facet Hyyppä, Eric
Kundu, Suman
Chan, Chun Fai
Gunyhó, András
Hotari, Juho
Janzso, David
Juliusson, Kristinn
Kiuru, Olavi
Kotilahti, Janne
Landra, Alessandro
Liu, Wei
Marxer, Fabian
Mäkinen, Akseli
Orgiazzi, Jean-Luc
Palma, Mario
Savytskyi, Mykhailo
Tosto, Francesca
Tuorila, Jani
Vadimov, Vasilii
Li, Tianyi
Ockeloen-Korppi, Caspar
Heinsoo, Johannes
Tan, Kuan Yen
Hassel, Juha
Möttönen, Mikko
author_sort Hyyppä, Eric
collection PubMed
description Superconducting qubits seem promising for useful quantum computers, but the currently wide-spread qubit designs and techniques do not yet provide high enough performance. Here, we introduce a superconducting-qubit type, the unimon, which combines the desired properties of increased anharmonicity, full insensitivity to dc charge noise, reduced sensitivity to flux noise, and a simple structure consisting only of a single Josephson junction in a resonator. In agreement with our quantum models, we measure the qubit frequency, ω(01)/(2π), and increased anharmonicity α/(2π) at the optimal operation point, yielding, for example, 99.9% and 99.8% fidelity for 13 ns single-qubit gates on two qubits with (ω(01), α) = (4.49 GHz, 434 MHz) × 2π and (3.55 GHz, 744 MHz) × 2π, respectively. The energy relaxation seems to be dominated by dielectric losses. Thus, improvements of the design, materials, and gate time may promote the unimon to break the 99.99% fidelity target for efficient quantum error correction and possible useful quantum advantage with noisy systems.
format Online
Article
Text
id pubmed-9653402
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-96534022022-11-15 Unimon qubit Hyyppä, Eric Kundu, Suman Chan, Chun Fai Gunyhó, András Hotari, Juho Janzso, David Juliusson, Kristinn Kiuru, Olavi Kotilahti, Janne Landra, Alessandro Liu, Wei Marxer, Fabian Mäkinen, Akseli Orgiazzi, Jean-Luc Palma, Mario Savytskyi, Mykhailo Tosto, Francesca Tuorila, Jani Vadimov, Vasilii Li, Tianyi Ockeloen-Korppi, Caspar Heinsoo, Johannes Tan, Kuan Yen Hassel, Juha Möttönen, Mikko Nat Commun Article Superconducting qubits seem promising for useful quantum computers, but the currently wide-spread qubit designs and techniques do not yet provide high enough performance. Here, we introduce a superconducting-qubit type, the unimon, which combines the desired properties of increased anharmonicity, full insensitivity to dc charge noise, reduced sensitivity to flux noise, and a simple structure consisting only of a single Josephson junction in a resonator. In agreement with our quantum models, we measure the qubit frequency, ω(01)/(2π), and increased anharmonicity α/(2π) at the optimal operation point, yielding, for example, 99.9% and 99.8% fidelity for 13 ns single-qubit gates on two qubits with (ω(01), α) = (4.49 GHz, 434 MHz) × 2π and (3.55 GHz, 744 MHz) × 2π, respectively. The energy relaxation seems to be dominated by dielectric losses. Thus, improvements of the design, materials, and gate time may promote the unimon to break the 99.99% fidelity target for efficient quantum error correction and possible useful quantum advantage with noisy systems. Nature Publishing Group UK 2022-11-12 /pmc/articles/PMC9653402/ /pubmed/36371435 http://dx.doi.org/10.1038/s41467-022-34614-w Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Hyyppä, Eric
Kundu, Suman
Chan, Chun Fai
Gunyhó, András
Hotari, Juho
Janzso, David
Juliusson, Kristinn
Kiuru, Olavi
Kotilahti, Janne
Landra, Alessandro
Liu, Wei
Marxer, Fabian
Mäkinen, Akseli
Orgiazzi, Jean-Luc
Palma, Mario
Savytskyi, Mykhailo
Tosto, Francesca
Tuorila, Jani
Vadimov, Vasilii
Li, Tianyi
Ockeloen-Korppi, Caspar
Heinsoo, Johannes
Tan, Kuan Yen
Hassel, Juha
Möttönen, Mikko
Unimon qubit
title Unimon qubit
title_full Unimon qubit
title_fullStr Unimon qubit
title_full_unstemmed Unimon qubit
title_short Unimon qubit
title_sort unimon qubit
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9653402/
https://www.ncbi.nlm.nih.gov/pubmed/36371435
http://dx.doi.org/10.1038/s41467-022-34614-w
work_keys_str_mv AT hyyppaeric unimonqubit
AT kundusuman unimonqubit
AT chanchunfai unimonqubit
AT gunyhoandras unimonqubit
AT hotarijuho unimonqubit
AT janzsodavid unimonqubit
AT juliussonkristinn unimonqubit
AT kiuruolavi unimonqubit
AT kotilahtijanne unimonqubit
AT landraalessandro unimonqubit
AT liuwei unimonqubit
AT marxerfabian unimonqubit
AT makinenakseli unimonqubit
AT orgiazzijeanluc unimonqubit
AT palmamario unimonqubit
AT savytskyimykhailo unimonqubit
AT tostofrancesca unimonqubit
AT tuorilajani unimonqubit
AT vadimovvasilii unimonqubit
AT litianyi unimonqubit
AT ockeloenkorppicaspar unimonqubit
AT heinsoojohannes unimonqubit
AT tankuanyen unimonqubit
AT hasseljuha unimonqubit
AT mottonenmikko unimonqubit