Cargando…
Design of a multi-epitope protein as a subunit vaccine against lumpy skin disease using an immunoinformatics approach
Lumpy skin disease (LSD) is a transboundary viral disease of cattle that causes substantial economic loss globally. There is no specific treatment and subunit vaccine for this disease to date. Reports of the global spread of this disease are worrisome. We designed a multi-epitope protein using an im...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9653426/ https://www.ncbi.nlm.nih.gov/pubmed/36371522 http://dx.doi.org/10.1038/s41598-022-23272-z |
Sumario: | Lumpy skin disease (LSD) is a transboundary viral disease of cattle that causes substantial economic loss globally. There is no specific treatment and subunit vaccine for this disease to date. Reports of the global spread of this disease are worrisome. We designed a multi-epitope protein using an immunoinformatics approach in this study. We analyzed the proteome of LSDV and found 32 structural/surface proteins. Four of these 32 proteins were predicted as antigenic and non-homologous to bovine and highly conserved in 26 LSDV isolates. The predicted B-cell epitopes and CTL epitopes were stitched together with the help of an AAY linker leading to the formation of a multi-epitope protein. The in silico study revealed that the modeled subunit vaccine candidate and TLR4 receptor interact with high affinity. This interaction was also found to be stable using a molecular dynamics simulation study. Our study demonstrates a leap towards developing a subunit vaccine against LSD. |
---|