Cargando…
Application of classical and novel integrated machine learning models to predict sediment discharge during free-flow flushing
In this study, the capabilities of classical and novel integrated machine learning models were investigated to predict sediment discharge (Q(s)) in free-flow flushing. Developed models include Multivariate Linear Regression (MLR), Artificial Neural Network (ANN), Adaptive Neuro-Fuzzy Inference Syste...
Autores principales: | Javadi, Fahime, Qaderi, Kourosh, Ahmadi, Mohammad Mehdi, Rahimpour, Majid, Madadi, Mohamad Reza, Mahdavi-Meymand, Amin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9653452/ https://www.ncbi.nlm.nih.gov/pubmed/36371476 http://dx.doi.org/10.1038/s41598-022-23781-x |
Ejemplares similares
-
Influence of different skew angles of the submerged vane on pressure flushing performance
por: Beiramipour, Sepideh, et al.
Publicado: (2023) -
A new optimization algorithm to solve multi-objective problems
por: Sharifi, Mohammad Reza, et al.
Publicado: (2021) -
Comparative analysis of some evolutionary-based models in optimization of dam reservoirs operation
por: Sharifi, Mohammad Reza, et al.
Publicado: (2021) -
Optimization of hydropower energy generation by 14 robust evolutionary algorithms
por: Sharifi, Mohammad Reza, et al.
Publicado: (2022) -
Investigation of Machining Characteristics in Electrical Discharge Machining Using a Slotted Electrode with Internal Flushing
por: Gao, Minghao, et al.
Publicado: (2023)