Cargando…
Surface roughness prediction of aircraft after coating removal based on optical image and deep learning
To quickly evaluate the surface quality of aircraft after coating removal, a surface roughness prediction method based on optical image and deep learning model is proposed. In this paper, the "optical image-surface roughness" data set is constructed, and SSEResNet for regression prediction...
Autores principales: | Hu, Qichun, Xu, Haojun, Chang, Yipeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9653504/ https://www.ncbi.nlm.nih.gov/pubmed/36371530 http://dx.doi.org/10.1038/s41598-022-24125-5 |
Ejemplares similares
-
Surface Roughness Measurement on a Wing Aircraft by Speckle Correlation
por: Salazar, Félix, et al.
Publicado: (2013) -
Matt Polyurethane Coating: Correlation of Surface Roughness on Measurement Length and Gloss
por: Yong, Qiwen, et al.
Publicado: (2020) -
Aircraft, aircraft
por: Taylor, John W. R. (John William Ransom), 1922-1999
Publicado: (1967) -
Prediction of Metal Additively Manufactured Surface Roughness Using Deep Neural Network
por: So, Min Seop, et al.
Publicado: (2022) -
Estimation of Tool Wear and Surface Roughness Development Using Deep Learning and Sensors Fusion
por: Huang, Pao-Ming, et al.
Publicado: (2021)