Cargando…
Insights into glycosidic bond specificity of an engineered selective α-L-rhamnosidase N12-Rha via activity assays and molecular modelling
αL-rhamnosidase (EC 3.2.1.40) has been widely used in food processing and pharmaceutical preparation. The recombinant α-L-rhamnosidase N12-Rha from Aspergillus niger JMU-TS528 had significantly higher catalytic activity on α-1,6 glycosidic bond than α-1,2 glycosidic bond, and had no activity on α-1,...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9653530/ https://www.ncbi.nlm.nih.gov/pubmed/36370155 http://dx.doi.org/10.1186/s13568-022-01489-5 |
Sumario: | αL-rhamnosidase (EC 3.2.1.40) has been widely used in food processing and pharmaceutical preparation. The recombinant α-L-rhamnosidase N12-Rha from Aspergillus niger JMU-TS528 had significantly higher catalytic activity on α-1,6 glycosidic bond than α-1,2 glycosidic bond, and had no activity on α-1,3 glycosidic bond. The activities of hydrolyzed hesperidin and naringin were 7240 U/mL and 945 U/mL, respectively, which are 10.63 times that of native α-L-rhamnosidase. The activity could maintain more than 80% at pH 3–6 and 40–60℃. Quantum chemistry calculations showed that charge difference of the C-O atoms of the α-1,2, α-1,3 and α-1,6 bonds indicated that α-1,6 bond is most easily broken and α-1,3 bond is the most stable. Molecular dynamics simulations revealed that the key residue Trp359 that may affect substrate specificity and the main catalytic sites of N12-Rha are located in the (α/α)(6)-barrel domain. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13568-022-01489-5. |
---|