Cargando…

Dual-Functionalized Nanoliposomes Achieve a Synergistic Chemo-Phototherapeutic Effect

The enhancement of photodynamic therapy (PDT) effectiveness by combining it with other treatment modalities and improved drug delivery has become an interesting field in cancer research. We have prepared and characterized nanoliposomes containing the chemotherapeutic drug irinotecan (CPT11(lip)), th...

Descripción completa

Detalles Bibliográficos
Autores principales: Lazaro-Carrillo, Ana, Rodríguez-Amigo, Beatriz, Mora, Margarita, Sagristá, Maria Lluïsa, Cañete, Magdalena, Nonell, Santi, Villanueva, Angeles
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9653560/
https://www.ncbi.nlm.nih.gov/pubmed/36361615
http://dx.doi.org/10.3390/ijms232112817
Descripción
Sumario:The enhancement of photodynamic therapy (PDT) effectiveness by combining it with other treatment modalities and improved drug delivery has become an interesting field in cancer research. We have prepared and characterized nanoliposomes containing the chemotherapeutic drug irinotecan (CPT11(lip)), the photodynamic agent protoporphyrin IX (PpIX(lip)), or their combination (CPT11-PpIX(lip)). The effects of individual and bimodal (chemo-phototherapeutic) treatments on HeLa cells have been studied by a combination of biological and photophysical studies. Bimodal treatments show synergistic cytotoxic effects on HeLa cells at relatively low doses of PpIX/PDT and CPT11. Mechanistic cell inactivation studies revealed mitotic catastrophe, apoptosis, and senescence contributions. The enhanced anticancer activity is due to a sustained generation of reactive oxygen species, which increases the number of double-strand DNA breaks. Bimodal chemo-phototherapeutic liposomes may have a very promising future in oncological therapy, potentially allowing a reduction in the CPT11 concentration required to achieve a therapeutic effect and overcoming resistance to individual cancer treatments.