Cargando…
Predicting Chemical Carcinogens Using a Hybrid Neural Network Deep Learning Method
Determining environmental chemical carcinogenicity is urgently needed as humans are increasingly exposed to these chemicals. In this study, we developed a hybrid neural network (HNN) method called HNN-Cancer to predict potential carcinogens of real-life chemicals. The HNN-Cancer included a new SMILE...
Autores principales: | Limbu, Sarita, Dakshanamurthy, Sivanesan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9653664/ https://www.ncbi.nlm.nih.gov/pubmed/36365881 http://dx.doi.org/10.3390/s22218185 |
Ejemplares similares
-
Predicting Dose-Dependent Carcinogenicity of Chemical Mixtures Using a Novel Hybrid Neural Network Framework and Mathematical Approach
por: Limbu, Sarita, et al.
Publicado: (2023) -
Predicting Dose-Range Chemical Toxicity using Novel Hybrid Deep Machine-Learning Method
por: Limbu, Sarita, et al.
Publicado: (2022) -
A New Hybrid Neural Network Deep Learning Method for Protein–Ligand Binding Affinity Prediction and De Novo Drug Design
por: Limbu, Sarita, et al.
Publicado: (2022) -
IntegralVac: A Machine Learning-Based Comprehensive Multivalent Epitope Vaccine Design Method
por: Suri, Sadhana, et al.
Publicado: (2022) -
A New Epitope Selection Method: Application to Design a Multi-Valent Epitope Vaccine Targeting HRAS Oncogene in Squamous Cell Carcinoma
por: Savsani, Kush, et al.
Publicado: (2021)