Cargando…

Analysis of RIOK2 Functions in Mediating the Toxic Effects of Deoxynivalenol in Porcine Intestinal Epithelial Cells

Deoxynivalenol (DON) is a type of mycotoxin that threatens human and livestock health. Right open reading frame kinase 2 (RIOK2) is a kinase that has a pivotal function in ribosome maturation and cell cycle progression. This study aims to clarify the role of the RIOK2 gene in DON-induced cytotoxicit...

Descripción completa

Detalles Bibliográficos
Autores principales: Gao, Zhongcheng, Xu, Chao, Fan, Hairui, Wang, Haifei, Wu, Zhengchang, Wu, Shenglong, Bao, Wenbin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9653672/
https://www.ncbi.nlm.nih.gov/pubmed/36361502
http://dx.doi.org/10.3390/ijms232112712
Descripción
Sumario:Deoxynivalenol (DON) is a type of mycotoxin that threatens human and livestock health. Right open reading frame kinase 2 (RIOK2) is a kinase that has a pivotal function in ribosome maturation and cell cycle progression. This study aims to clarify the role of the RIOK2 gene in DON-induced cytotoxicity regulation in porcine intestinal epithelial cells (IPEC-J2). Cell viability assay and flow cytometry showed that the knockdown of RIOK2 inhibited proliferation and induced apoptosis, cell cycle arrest, and oxidative stress in DON-induced IPEC-J2. Then, transcriptome profiling identified candidate genes and pathways that closely interacted with both DON cytotoxicity regulation and RIOK2 expression. Furthermore, RIOK2 interference promoted the activation of the MAPK signaling pathway by increasing the phosphorylation of ERK and JNK. Additionally, we performed the dual-luciferase reporter and ChIP assays to elucidate that the expression of RIOK2 was influenced by the binding of transcription factor Sp1 with the promoter region. Briefly, the reduced expression of the RIOK2 gene exacerbates the cytotoxic effects induced by DON in IPEC-J2. Our findings provide insights into the control strategies for DON contamination by identifying functional genes and effective molecular markers.