Cargando…
Deep Learning for Improving the Effectiveness of Routine Prenatal Screening for Major Congenital Heart Diseases
Early prenatal screening with an ultrasound (US) can significantly lower newborn mortality caused by congenital heart diseases (CHDs). However, the need for expertise in fetal cardiologists and the high volume of screening cases limit the practically achievable detection rates. Hence, automated pren...
Autores principales: | Nurmaini, Siti, Partan, Radiyati Umi, Bernolian, Nuswil, Sapitri, Ade Iriani, Tutuko, Bambang, Rachmatullah, Muhammad Naufal, Darmawahyuni, Annisa, Firdaus, Firdaus, Mose, Johanes C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9653675/ https://www.ncbi.nlm.nih.gov/pubmed/36362685 http://dx.doi.org/10.3390/jcm11216454 |
Ejemplares similares
-
Deep Learning-Based Computer-Aided Fetal Echocardiography: Application to Heart Standard View Segmentation for Congenital Heart Defects Detection
por: Nurmaini, Siti, et al.
Publicado: (2021) -
Short Single-Lead ECG Signal Delineation-Based Deep Learning: Implementation in Automatic Atrial Fibrillation Identification
por: Tutuko, Bambang, et al.
Publicado: (2022) -
Automatic echocardiographic anomalies interpretation using a stacked residual-dense network model
por: Nurmaini, Siti, et al.
Publicado: (2023) -
Deep learning-based electrocardiogram rhythm and beat features for heart abnormality classification
por: Darmawahyuni, Annisa, et al.
Publicado: (2022) -
AFibNet: an implementation of atrial fibrillation detection with convolutional neural network
por: Tutuko, Bambang, et al.
Publicado: (2021)