Cargando…
Mixture Optimization of Cementitious Materials Using Machine Learning and Metaheuristic Algorithms: State of the Art and Future Prospects
The hybrid optimization of modern cementitious materials requires concrete to meet many competing objectives (e.g., mechanical properties, cost, workability, environmental requirements, and durability). This paper reviews the current literature on optimizing mixing ratios using machine learning and...
Autores principales: | Song, Yaxin, Wang, Xudong, Li, Houchang, He, Yanjun, Zhang, Zilong, Huang, Jiandong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9653738/ https://www.ncbi.nlm.nih.gov/pubmed/36363421 http://dx.doi.org/10.3390/ma15217830 |
Ejemplares similares
-
Applications of metaheuristic optimization algorithms in civil engineering
por: Kaveh, A
Publicado: (2017) -
Advances in metaheuristic algorithms for optimal design of structures
por: Kaveh, A
Publicado: (2017) -
Advances in metaheuristic algorithms for optimal design of structures
por: Kaveh, A
Publicado: (2014) -
Advances in metaheuristics algorithms
por: Cuevas, Erik, et al.
Publicado: (2018) -
Search and optimization by metaheuristics: techniques and algorithms inspired by nature
por: Du, Ke-Lin, et al.
Publicado: (2016)