Cargando…
Addressing the Challenges and Barriers to the Integration of Machine Learning into Clinical Practice: An Innovative Method to Hybrid Human–Machine Intelligence
Machine learning (ML) models have proven their potential in acquiring and analyzing large amounts of data to help solve real-world, complex problems. Their use in healthcare is expected to help physicians make diagnoses, prognoses, treatment decisions, and disease outcome predictions. However, ML so...
Autores principales: | Ed-Driouch, Chadia, Mars, Franck, Gourraud, Pierre-Antoine, Dumas, Cédric |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9653746/ https://www.ncbi.nlm.nih.gov/pubmed/36366011 http://dx.doi.org/10.3390/s22218313 |
Ejemplares similares
-
Multiple sclerosis clinical decision support system based on projection to reference datasets
por: Ed‐driouch, Chadia, et al.
Publicado: (2022) -
Innovations in intelligent machines
por: Watanabe, Toyohide, et al.
Publicado: (2012) -
Innovations in intelligent machines - 1
por: Chahl, Javaan Singh, et al.
Publicado: (2007) -
Machine learning in medicine: Addressing ethical challenges
por: Vayena, Effy, et al.
Publicado: (2018) -
The intersection of video capsule endoscopy and artificial intelligence: addressing unique challenges using machine learning
por: Guleria, Shan, et al.
Publicado: (2023)