Cargando…
Laboratory Extractions of Soil Phosphorus Do Not Reflect the Fact That Liming Increases Rye Phosphorus Content and Yield in an Acidic Soil
In addition to aluminum and other heavy metal toxicities, acidic soils also feature nutrient deficits that are not easily overcome by merely adding the required amounts of mineral fertilizers. One of the most critically scarce nutrients in acidic soils is phosphorus, which reacts with aluminum and i...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9653810/ https://www.ncbi.nlm.nih.gov/pubmed/36365328 http://dx.doi.org/10.3390/plants11212871 |
_version_ | 1784828772985339904 |
---|---|
author | Olego, Miguel Ángel Cuesta-Lasso, Mateo D. Visconti Reluy, Fernando López, Roberto López-Losada, Alba Garzón-Jimeno, Enrique |
author_facet | Olego, Miguel Ángel Cuesta-Lasso, Mateo D. Visconti Reluy, Fernando López, Roberto López-Losada, Alba Garzón-Jimeno, Enrique |
author_sort | Olego, Miguel Ángel |
collection | PubMed |
description | In addition to aluminum and other heavy metal toxicities, acidic soils also feature nutrient deficits that are not easily overcome by merely adding the required amounts of mineral fertilizers. One of the most critically scarce nutrients in acidic soils is phosphorus, which reacts with aluminum and iron to form phosphates that keep soil phosphorus availability significantly low. Liming ameliorates acidic soils by increasing pH and decreasing aluminum contents; however, it also increases the amount of calcium, which can react with phosphorus to form low-solubility phosphates. In the present work, three liming materials, namely, dolomitic limestone, limestone and sugar foam, were applied on a Typic Palexerult cropped with rye. The effects of these materials on soil properties, including soil available phosphorus extracted with the Olsen and Bray-1 methods, rye phosphorus content in stems and stem and spike harvested biomasses were monitored for nine years. According to the Olsen extraction, the amount of soil available phosphorus generally decreased following liming, with limestone presenting the lowest values; however, the amount of soil available phosphorus increased according to the Bray-1 extraction, though only to a significant extent with the sugar foam from the third year onward. Regardless, the phosphorus content in rye and the relative biomass yield in both stems and spikes generally increased as a consequence of liming. Since crop uptake and growth are the ultimate tests of soil nutrient availability, the inconsistent stem phosphorus content results following the Olsen and Bray-1 extraction methods suggest a lowered efficiency of both extractants regarding crops in soils rich in both aluminum and calcium ions. This decrease can lead to important interpretation errors in the specific conditions of these limed acidic soils, so other methods should be applied and/or researched to better mimic the crop roots’ phosphorus extraction ability. Consequently, the effects of the liming of acidic soils on phosphorus availability and crop performance in the short and long term will be better understood. |
format | Online Article Text |
id | pubmed-9653810 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-96538102022-11-15 Laboratory Extractions of Soil Phosphorus Do Not Reflect the Fact That Liming Increases Rye Phosphorus Content and Yield in an Acidic Soil Olego, Miguel Ángel Cuesta-Lasso, Mateo D. Visconti Reluy, Fernando López, Roberto López-Losada, Alba Garzón-Jimeno, Enrique Plants (Basel) Article In addition to aluminum and other heavy metal toxicities, acidic soils also feature nutrient deficits that are not easily overcome by merely adding the required amounts of mineral fertilizers. One of the most critically scarce nutrients in acidic soils is phosphorus, which reacts with aluminum and iron to form phosphates that keep soil phosphorus availability significantly low. Liming ameliorates acidic soils by increasing pH and decreasing aluminum contents; however, it also increases the amount of calcium, which can react with phosphorus to form low-solubility phosphates. In the present work, three liming materials, namely, dolomitic limestone, limestone and sugar foam, were applied on a Typic Palexerult cropped with rye. The effects of these materials on soil properties, including soil available phosphorus extracted with the Olsen and Bray-1 methods, rye phosphorus content in stems and stem and spike harvested biomasses were monitored for nine years. According to the Olsen extraction, the amount of soil available phosphorus generally decreased following liming, with limestone presenting the lowest values; however, the amount of soil available phosphorus increased according to the Bray-1 extraction, though only to a significant extent with the sugar foam from the third year onward. Regardless, the phosphorus content in rye and the relative biomass yield in both stems and spikes generally increased as a consequence of liming. Since crop uptake and growth are the ultimate tests of soil nutrient availability, the inconsistent stem phosphorus content results following the Olsen and Bray-1 extraction methods suggest a lowered efficiency of both extractants regarding crops in soils rich in both aluminum and calcium ions. This decrease can lead to important interpretation errors in the specific conditions of these limed acidic soils, so other methods should be applied and/or researched to better mimic the crop roots’ phosphorus extraction ability. Consequently, the effects of the liming of acidic soils on phosphorus availability and crop performance in the short and long term will be better understood. MDPI 2022-10-27 /pmc/articles/PMC9653810/ /pubmed/36365328 http://dx.doi.org/10.3390/plants11212871 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Olego, Miguel Ángel Cuesta-Lasso, Mateo D. Visconti Reluy, Fernando López, Roberto López-Losada, Alba Garzón-Jimeno, Enrique Laboratory Extractions of Soil Phosphorus Do Not Reflect the Fact That Liming Increases Rye Phosphorus Content and Yield in an Acidic Soil |
title | Laboratory Extractions of Soil Phosphorus Do Not Reflect the Fact That Liming Increases Rye Phosphorus Content and Yield in an Acidic Soil |
title_full | Laboratory Extractions of Soil Phosphorus Do Not Reflect the Fact That Liming Increases Rye Phosphorus Content and Yield in an Acidic Soil |
title_fullStr | Laboratory Extractions of Soil Phosphorus Do Not Reflect the Fact That Liming Increases Rye Phosphorus Content and Yield in an Acidic Soil |
title_full_unstemmed | Laboratory Extractions of Soil Phosphorus Do Not Reflect the Fact That Liming Increases Rye Phosphorus Content and Yield in an Acidic Soil |
title_short | Laboratory Extractions of Soil Phosphorus Do Not Reflect the Fact That Liming Increases Rye Phosphorus Content and Yield in an Acidic Soil |
title_sort | laboratory extractions of soil phosphorus do not reflect the fact that liming increases rye phosphorus content and yield in an acidic soil |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9653810/ https://www.ncbi.nlm.nih.gov/pubmed/36365328 http://dx.doi.org/10.3390/plants11212871 |
work_keys_str_mv | AT olegomiguelangel laboratoryextractionsofsoilphosphorusdonotreflectthefactthatlimingincreasesryephosphoruscontentandyieldinanacidicsoil AT cuestalassomateod laboratoryextractionsofsoilphosphorusdonotreflectthefactthatlimingincreasesryephosphoruscontentandyieldinanacidicsoil AT viscontireluyfernando laboratoryextractionsofsoilphosphorusdonotreflectthefactthatlimingincreasesryephosphoruscontentandyieldinanacidicsoil AT lopezroberto laboratoryextractionsofsoilphosphorusdonotreflectthefactthatlimingincreasesryephosphoruscontentandyieldinanacidicsoil AT lopezlosadaalba laboratoryextractionsofsoilphosphorusdonotreflectthefactthatlimingincreasesryephosphoruscontentandyieldinanacidicsoil AT garzonjimenoenrique laboratoryextractionsofsoilphosphorusdonotreflectthefactthatlimingincreasesryephosphoruscontentandyieldinanacidicsoil |