Cargando…

Prodigiosin from Serratia Marcescens in Cockroach Inhibits the Proliferation of Hepatocellular Carcinoma Cells through Endoplasmic Reticulum Stress-Induced Apoptosis

Hepatocellular carcinoma (HCC) is the most common primary liver malignant tumor, and the targeted therapy for HCC is very limited. Our previous study demonstrated that prodigiosin(PG), a secondary metabolite from Serratia marcescens found in the intestinal flora of cockroaches, inhibits the prolifer...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Jie, Liu, Hancong, Zhu, Liuchong, Wang, Jingyi, Luo, Xiongming, Liu, Wenbin, Ma, Yan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9653855/
https://www.ncbi.nlm.nih.gov/pubmed/36364107
http://dx.doi.org/10.3390/molecules27217281
_version_ 1784828784366583808
author Wang, Jie
Liu, Hancong
Zhu, Liuchong
Wang, Jingyi
Luo, Xiongming
Liu, Wenbin
Ma, Yan
author_facet Wang, Jie
Liu, Hancong
Zhu, Liuchong
Wang, Jingyi
Luo, Xiongming
Liu, Wenbin
Ma, Yan
author_sort Wang, Jie
collection PubMed
description Hepatocellular carcinoma (HCC) is the most common primary liver malignant tumor, and the targeted therapy for HCC is very limited. Our previous study demonstrated that prodigiosin(PG), a secondary metabolite from Serratia marcescens found in the intestinal flora of cockroaches, inhibits the proliferation of HCC and increases the expression of CHOP, a marker protein for endoplasmic reticulum stress (ERS)-mediated apoptosis, in a dose-dependent manner. However, the mechanisms underlying the activity of PG in vivo and in vitro are unclear. This study explored the molecular mechanisms of PG-induced ERS against liver cancer in vitro and in vivo. The apoptosis of hepatocellular carcinoma cells induced by PG through endoplasmic reticulum stress was observed by flow cytometry, colony formation assay, cell viability assay, immunoblot analysis, and TUNEL assay. The localization of PG in cells was observed using laser confocal fluorescence microscopy. Flow cytometry was used to detect the intracellular Ca(2+) concentration after PG treatment. We found that PG could promote apoptosis and inhibit the proliferation of HCC. It was localized in the endoplasmic reticulum of HepG2 cells, where it induces the release of Ca(2+). PG also upregulated the expression of key unfolded response proteins, including PERK, IRE1α, Bip, and CHOP, and related apoptotic proteins, including caspase3, caspase9, and Bax, but down-regulated the expression of anti-apoptotic protein Bcl-2 in liver cancer. Alleviating ERS reversed the above phenomenon. PG had no obvious negative effects on the functioning of the liver, kidney, and other main organs in nude mice, but the growth of liver cancer cells was inhibited by inducing ERS in vivo. The findings of this study showed that PG promotes apoptosis of HCC by inducing ERS.
format Online
Article
Text
id pubmed-9653855
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-96538552022-11-15 Prodigiosin from Serratia Marcescens in Cockroach Inhibits the Proliferation of Hepatocellular Carcinoma Cells through Endoplasmic Reticulum Stress-Induced Apoptosis Wang, Jie Liu, Hancong Zhu, Liuchong Wang, Jingyi Luo, Xiongming Liu, Wenbin Ma, Yan Molecules Article Hepatocellular carcinoma (HCC) is the most common primary liver malignant tumor, and the targeted therapy for HCC is very limited. Our previous study demonstrated that prodigiosin(PG), a secondary metabolite from Serratia marcescens found in the intestinal flora of cockroaches, inhibits the proliferation of HCC and increases the expression of CHOP, a marker protein for endoplasmic reticulum stress (ERS)-mediated apoptosis, in a dose-dependent manner. However, the mechanisms underlying the activity of PG in vivo and in vitro are unclear. This study explored the molecular mechanisms of PG-induced ERS against liver cancer in vitro and in vivo. The apoptosis of hepatocellular carcinoma cells induced by PG through endoplasmic reticulum stress was observed by flow cytometry, colony formation assay, cell viability assay, immunoblot analysis, and TUNEL assay. The localization of PG in cells was observed using laser confocal fluorescence microscopy. Flow cytometry was used to detect the intracellular Ca(2+) concentration after PG treatment. We found that PG could promote apoptosis and inhibit the proliferation of HCC. It was localized in the endoplasmic reticulum of HepG2 cells, where it induces the release of Ca(2+). PG also upregulated the expression of key unfolded response proteins, including PERK, IRE1α, Bip, and CHOP, and related apoptotic proteins, including caspase3, caspase9, and Bax, but down-regulated the expression of anti-apoptotic protein Bcl-2 in liver cancer. Alleviating ERS reversed the above phenomenon. PG had no obvious negative effects on the functioning of the liver, kidney, and other main organs in nude mice, but the growth of liver cancer cells was inhibited by inducing ERS in vivo. The findings of this study showed that PG promotes apoptosis of HCC by inducing ERS. MDPI 2022-10-26 /pmc/articles/PMC9653855/ /pubmed/36364107 http://dx.doi.org/10.3390/molecules27217281 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Wang, Jie
Liu, Hancong
Zhu, Liuchong
Wang, Jingyi
Luo, Xiongming
Liu, Wenbin
Ma, Yan
Prodigiosin from Serratia Marcescens in Cockroach Inhibits the Proliferation of Hepatocellular Carcinoma Cells through Endoplasmic Reticulum Stress-Induced Apoptosis
title Prodigiosin from Serratia Marcescens in Cockroach Inhibits the Proliferation of Hepatocellular Carcinoma Cells through Endoplasmic Reticulum Stress-Induced Apoptosis
title_full Prodigiosin from Serratia Marcescens in Cockroach Inhibits the Proliferation of Hepatocellular Carcinoma Cells through Endoplasmic Reticulum Stress-Induced Apoptosis
title_fullStr Prodigiosin from Serratia Marcescens in Cockroach Inhibits the Proliferation of Hepatocellular Carcinoma Cells through Endoplasmic Reticulum Stress-Induced Apoptosis
title_full_unstemmed Prodigiosin from Serratia Marcescens in Cockroach Inhibits the Proliferation of Hepatocellular Carcinoma Cells through Endoplasmic Reticulum Stress-Induced Apoptosis
title_short Prodigiosin from Serratia Marcescens in Cockroach Inhibits the Proliferation of Hepatocellular Carcinoma Cells through Endoplasmic Reticulum Stress-Induced Apoptosis
title_sort prodigiosin from serratia marcescens in cockroach inhibits the proliferation of hepatocellular carcinoma cells through endoplasmic reticulum stress-induced apoptosis
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9653855/
https://www.ncbi.nlm.nih.gov/pubmed/36364107
http://dx.doi.org/10.3390/molecules27217281
work_keys_str_mv AT wangjie prodigiosinfromserratiamarcescensincockroachinhibitstheproliferationofhepatocellularcarcinomacellsthroughendoplasmicreticulumstressinducedapoptosis
AT liuhancong prodigiosinfromserratiamarcescensincockroachinhibitstheproliferationofhepatocellularcarcinomacellsthroughendoplasmicreticulumstressinducedapoptosis
AT zhuliuchong prodigiosinfromserratiamarcescensincockroachinhibitstheproliferationofhepatocellularcarcinomacellsthroughendoplasmicreticulumstressinducedapoptosis
AT wangjingyi prodigiosinfromserratiamarcescensincockroachinhibitstheproliferationofhepatocellularcarcinomacellsthroughendoplasmicreticulumstressinducedapoptosis
AT luoxiongming prodigiosinfromserratiamarcescensincockroachinhibitstheproliferationofhepatocellularcarcinomacellsthroughendoplasmicreticulumstressinducedapoptosis
AT liuwenbin prodigiosinfromserratiamarcescensincockroachinhibitstheproliferationofhepatocellularcarcinomacellsthroughendoplasmicreticulumstressinducedapoptosis
AT mayan prodigiosinfromserratiamarcescensincockroachinhibitstheproliferationofhepatocellularcarcinomacellsthroughendoplasmicreticulumstressinducedapoptosis