Cargando…

Analysis of Gyro Bias Depending on the Position of Inertial Measurement Unit in Rotational Inertial Navigation Systems

In this paper, a calibration method for gyro bias that changes depending on the position of the IMU (inertial measurement unit) is proposed to improve the navigation performance of RLG-based RINS (ring-laser-gyro-based rotational inertial navigation system). RINS is a navigation device that compensa...

Descripción completa

Detalles Bibliográficos
Autores principales: Seo, Yeong-Bin, Yu, Haesung, Ryu, Kyungdon, Lee, Inseop, Oh, Juhyun, Kim, Cheonjoong, Lee, Sang Jeong, Park, Chansik
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9653864/
https://www.ncbi.nlm.nih.gov/pubmed/36366052
http://dx.doi.org/10.3390/s22218355
Descripción
Sumario:In this paper, a calibration method for gyro bias that changes depending on the position of the IMU (inertial measurement unit) is proposed to improve the navigation performance of RLG-based RINS (ring-laser-gyro-based rotational inertial navigation system). RINS is a navigation device that compensates for the inertial sensor errors by utilizing the rotation of the IMU. In previous studies, the rotation scheme of the IMU is designed assuming that inertial sensor errors are not affected by position of the IMU. However, changes in temperature distribution, direction of gravity, and dithering according to the rotation of the IMU affect the inertial sensor errors, such as gyro bias. These errors could degrade the long-term navigation performance of RLG-based RINS. To deal with this problem, this paper proposed a compensation method of the gyro bias that changes depending on the position of the IMU. First, RINS is reviewed using a dual-axis 16-position rotation scheme and RLG. Next, the attitude error of RLG-based RINS is derived utilizing navigation equations. The effect of the gyro bias change caused by the change in the IMU attitude for the navigation performance of RINS is analyzed based on navigation equations and simulations. Finally, system-level indirect calibrations for the Z–axis up position and Z–axis down position are performed to calculate the gyro bias change caused by the IMU attitude. The accuracy of the proposed calibration method is verified by long-term navigation test. The test results show that the proposed calibration method improves the navigation performance of RINS compared with the conventional calibration method.