Cargando…
Effect of the Matrix Melt Flow Index and Fillers on Mechanical Properties of Polypropylene-Based Composites
In this work, mechanical properties of reinforced polypropylene composites were studied. PP in particulates shape with two different melt flow indexes (MFI) was used, i.e., 3 and 23 g/10 min, namely PP3 and PP23, respectively. Three different materials, namely TiO(2) nanoparticle (nTiO(2), spherical...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9653867/ https://www.ncbi.nlm.nih.gov/pubmed/36363158 http://dx.doi.org/10.3390/ma15217568 |
_version_ | 1784828787234439168 |
---|---|
author | Junaedi, Harri Baig, Muneer Dawood, Abdulsattar Albahkali, Essam Almajid, Abdulhakim |
author_facet | Junaedi, Harri Baig, Muneer Dawood, Abdulsattar Albahkali, Essam Almajid, Abdulhakim |
author_sort | Junaedi, Harri |
collection | PubMed |
description | In this work, mechanical properties of reinforced polypropylene composites were studied. PP in particulates shape with two different melt flow indexes (MFI) was used, i.e., 3 and 23 g/10 min, namely PP3 and PP23, respectively. Three different materials, namely TiO(2) nanoparticle (nTiO(2), spherical, 0D), micro-size short carbon fiber (SCF, fiber, 1D), and graphite nanoplatelet (GNP, sheet, 2D), were used as reinforcements/fillers. PP and fillers (in the desired composition) were first pre-mixed by a mechanical mixer. The mixture was then fed to a co-rotating twin-screw extruder for melt-compounding, followed by injection molding to fabricate testing samples. The microstructure and fracture surface of the composites were observed by a scanning electron microscope (SEM). Additionally, tensile, flexural, impact, and hardness tests were conducted to evaluate their mechanical properties. The SEM images stipulate that PP23 had better adhesion and dispersion with the fillers. The results from the SEM images support the mechanical testing results. PP23 composites exhibited more significant improvement in mechanical properties in comparison to PP3. At 5 wt. % filler loading, PP/GNP composite exhibited a greater improvement in mechanical properties compared with two other composites, which are PP/SCF and PP/nTiO(2) composites for both PPs. |
format | Online Article Text |
id | pubmed-9653867 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-96538672022-11-15 Effect of the Matrix Melt Flow Index and Fillers on Mechanical Properties of Polypropylene-Based Composites Junaedi, Harri Baig, Muneer Dawood, Abdulsattar Albahkali, Essam Almajid, Abdulhakim Materials (Basel) Article In this work, mechanical properties of reinforced polypropylene composites were studied. PP in particulates shape with two different melt flow indexes (MFI) was used, i.e., 3 and 23 g/10 min, namely PP3 and PP23, respectively. Three different materials, namely TiO(2) nanoparticle (nTiO(2), spherical, 0D), micro-size short carbon fiber (SCF, fiber, 1D), and graphite nanoplatelet (GNP, sheet, 2D), were used as reinforcements/fillers. PP and fillers (in the desired composition) were first pre-mixed by a mechanical mixer. The mixture was then fed to a co-rotating twin-screw extruder for melt-compounding, followed by injection molding to fabricate testing samples. The microstructure and fracture surface of the composites were observed by a scanning electron microscope (SEM). Additionally, tensile, flexural, impact, and hardness tests were conducted to evaluate their mechanical properties. The SEM images stipulate that PP23 had better adhesion and dispersion with the fillers. The results from the SEM images support the mechanical testing results. PP23 composites exhibited more significant improvement in mechanical properties in comparison to PP3. At 5 wt. % filler loading, PP/GNP composite exhibited a greater improvement in mechanical properties compared with two other composites, which are PP/SCF and PP/nTiO(2) composites for both PPs. MDPI 2022-10-28 /pmc/articles/PMC9653867/ /pubmed/36363158 http://dx.doi.org/10.3390/ma15217568 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Junaedi, Harri Baig, Muneer Dawood, Abdulsattar Albahkali, Essam Almajid, Abdulhakim Effect of the Matrix Melt Flow Index and Fillers on Mechanical Properties of Polypropylene-Based Composites |
title | Effect of the Matrix Melt Flow Index and Fillers on Mechanical Properties of Polypropylene-Based Composites |
title_full | Effect of the Matrix Melt Flow Index and Fillers on Mechanical Properties of Polypropylene-Based Composites |
title_fullStr | Effect of the Matrix Melt Flow Index and Fillers on Mechanical Properties of Polypropylene-Based Composites |
title_full_unstemmed | Effect of the Matrix Melt Flow Index and Fillers on Mechanical Properties of Polypropylene-Based Composites |
title_short | Effect of the Matrix Melt Flow Index and Fillers on Mechanical Properties of Polypropylene-Based Composites |
title_sort | effect of the matrix melt flow index and fillers on mechanical properties of polypropylene-based composites |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9653867/ https://www.ncbi.nlm.nih.gov/pubmed/36363158 http://dx.doi.org/10.3390/ma15217568 |
work_keys_str_mv | AT junaediharri effectofthematrixmeltflowindexandfillersonmechanicalpropertiesofpolypropylenebasedcomposites AT baigmuneer effectofthematrixmeltflowindexandfillersonmechanicalpropertiesofpolypropylenebasedcomposites AT dawoodabdulsattar effectofthematrixmeltflowindexandfillersonmechanicalpropertiesofpolypropylenebasedcomposites AT albahkaliessam effectofthematrixmeltflowindexandfillersonmechanicalpropertiesofpolypropylenebasedcomposites AT almajidabdulhakim effectofthematrixmeltflowindexandfillersonmechanicalpropertiesofpolypropylenebasedcomposites |