Cargando…

Analysis of Filler Metals Influence on Quality of Hard-Faced Surfaces of Gears Based on Tests in Experimental and Operating Conditions

Hard-facing as a type of the coating depositing is increasingly used today. Physical-chemical-metallurgical characteristics of contact layers in tribo-mechanical systems depend on the operating conditions and the conditions under which the work surfaces were created. That is the reason the influence...

Descripción completa

Detalles Bibliográficos
Autores principales: Marković, Svetislav, Lazić, Vukić, Arsić, Dušan, Nikolić, Ružica R., Ivković, Djordje, Ulewicz, Robert, Bokuvka, Otakar
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9653893/
https://www.ncbi.nlm.nih.gov/pubmed/36363386
http://dx.doi.org/10.3390/ma15217795
Descripción
Sumario:Hard-facing as a type of the coating depositing is increasingly used today. Physical-chemical-metallurgical characteristics of contact layers in tribo-mechanical systems depend on the operating conditions and the conditions under which the work surfaces were created. That is the reason the influence of the processing procedures and regime, used in the contact surfaces formation, on development of the wear process of contact elements, is being considered ever more. To determine the influence of the hard-facing technology on characteristics of the gears’ working surfaces, the experimental investigations were performed on samples hard-faced on the steel for cementation, by varying the filler metals (FM) and the hard-facing regimes. The samples tested were hard-faced by five “hard” and three “soft” filler metals. Experimental investigations included measuring the hard-faced layers’ hardness and determination of their microstructure, as well as the wear resistance in the laboratory conditions, on tribometer and on a specially designed device for tests in the real operating conditions of gears. The wear intensity was monitored by the wear trace’s width in the laboratory conditions and by the share of the teeth surfaces affected by the destructive pitting in the operating conditions. The results obtained were compared to results of the base metal (BM) tests, which provided the certain conclusions on which filler metal and which welding procedure are the optimal ones for regeneration of the worn teeth surfaces.