Cargando…

Effect of Severe Plastic Deformation and Post-Deformation Heat Treatment on the Microstructure and Superelastic Properties of Ti-50.8 at.% Ni Alloy

Severe plastic deformation via high-ratio differential speed rolling (HRDSR) was applied to the Ni-rich Ti-50.8Ni alloy. Application of HRDSR and a short annealing time of 5 min at 873 K leads to the production of a partially recrystallized microstructure with a small grain size of 5.1 μm. During th...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Tae-Jin, Kim, Woo-Jin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9653910/
https://www.ncbi.nlm.nih.gov/pubmed/36363414
http://dx.doi.org/10.3390/ma15217822
Descripción
Sumario:Severe plastic deformation via high-ratio differential speed rolling (HRDSR) was applied to the Ni-rich Ti-50.8Ni alloy. Application of HRDSR and a short annealing time of 5 min at 873 K leads to the production of a partially recrystallized microstructure with a small grain size of 5.1 μm. During the aging process for the annealed HRDSR sample at 523 K for 16 h, a high density of Ni(3)Ti(4) particles was uniformly precipitated over the matrix, resulting in the formation of an R phase as the major phase at room temperature. The aged HRDSR sample exhibits excellent superelasticity and superelastic cyclability. This achievement can be attributed to an increase in strength through effective grain refinement and particle strengthening by Ni(3)Ti(4) and a decrease in the critical stress for stress-induced martensite (B19′) due to the presence of the R-phase instead of B2 as a major phase at room temperature. The currently proposed method for using HRDSR and post-deformation heat treatment allows for the production of Ni-rich NiTi alloys with excellent superelasticity in sheet form.