Cargando…
Improving the Reliability of Scale-Free Image Morphometrics in Applications with Minimally Restrained Livestock Using Projective Geometry and Unsupervised Machine Learning
Advances in neural networks have garnered growing interest in applications of machine vision in livestock management, but simpler landmark-based approaches suitable for small, early stage exploratory studies still represent a critical stepping stone towards these more sophisticated analyses. While s...
Autores principales: | McVey, Catherine, Egger, Daniel, Pinedo, Pablo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9653925/ https://www.ncbi.nlm.nih.gov/pubmed/36366045 http://dx.doi.org/10.3390/s22218347 |
Ejemplares similares
-
Mind the Queue: A Case Study in Visualizing Heterogeneous Behavioral Patterns in Livestock Sensor Data Using Unsupervised Machine Learning Techniques
por: McVey, Catherine, et al.
Publicado: (2020) -
Livestock Informatics Toolkit: A Case Study in Visually Characterizing Complex Behavioral Patterns across Multiple Sensor Platforms, Using Novel Unsupervised Machine Learning and Information Theoretic Approaches
por: McVey, Catherine, et al.
Publicado: (2021) -
Mosquito host choices on livestock amplifiers of Rift Valley fever virus in Kenya
por: Tchouassi, David P., et al.
Publicado: (2016) -
Projective geometry and formal geometry
por: Bădescu, Lucian
Publicado: (2004) -
Projective geometry
por: Faulkner, Thomas Ewan
Publicado: (1952)