Cargando…
DeepThal: A Deep Learning-Based Framework for the Large-Scale Prediction of the α(+)-Thalassemia Trait Using Red Blood Cell Parameters
Objectives: To develop a machine learning (ML)-based framework using red blood cell (RBC) parameters for the prediction of the α(+)-thalassemia trait (α(+)-thal trait) and to compare the diagnostic performance with a conventional method using a single RBC parameter or a combination of RBC parameters...
Autores principales: | Phirom, Krittaya, Charoenkwan, Phasit, Shoombuatong, Watshara, Charoenkwan, Pimlak, Sirichotiyakul, Supatra, Tongsong, Theera |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9654007/ https://www.ncbi.nlm.nih.gov/pubmed/36362531 http://dx.doi.org/10.3390/jcm11216305 |
Ejemplares similares
-
DeepAR: a novel deep learning-based hybrid framework for the interpretable prediction of androgen receptor antagonists
por: Schaduangrat, Nalini, et al.
Publicado: (2023) -
StackTTCA: a stacking ensemble learning-based framework for accurate and high-throughput identification of tumor T cell antigens
por: Charoenkwan, Phasit, et al.
Publicado: (2023) -
iPMI: Machine Learning-Aided Identification of Parametrial Invasion in Women with Early-Stage Cervical Cancer
por: Charoenkwan, Phasit, et al.
Publicado: (2021) -
Computational prediction and interpretation of druggable proteins using a stacked ensemble-learning framework
por: Charoenkwan, Phasit, et al.
Publicado: (2022) -
Correction: Shoombuatong, W., et al. iQSP: A Sequence-Based Tool for the Prediction and Analysis of Quorum Sensing Peptides via Chou’s 5-Steps Rule and Informative Physicochemical Properties. Int. J. Mol. Sci. 2020, 21, 75
por: Charoenkwan, Phasit, et al.
Publicado: (2020)