Cargando…

Power Output Enhancement of Natural Rubber Based Triboelectric Nanogenerator with Cellulose Nanofibers and Activated Carbon

The growing demand for energy and environmental concern are crucial driving forces for the development of green and sustainable energy. The triboelectric nanogenerator (TENG) has emerged as a promising solution for harvesting mechanical energy from the environment. In this research, a natural rubber...

Descripción completa

Detalles Bibliográficos
Autores principales: Mekbuntoon, Pongsakorn, Kaeochana, Walailak, Prada, Teerayut, Appamato, Intuorn, Harnchana, Viyada
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9654016/
https://www.ncbi.nlm.nih.gov/pubmed/36365489
http://dx.doi.org/10.3390/polym14214495
Descripción
Sumario:The growing demand for energy and environmental concern are crucial driving forces for the development of green and sustainable energy. The triboelectric nanogenerator (TENG) has emerged as a promising solution for harvesting mechanical energy from the environment. In this research, a natural rubber (NR)-based TENG has been developed with an enhanced power output from the incorporation of cellulose nanofibers (CNF) and activated carbon (AC) nanoparticles. The highest voltage output of 137 V, a current of 12.1 µA, and power density of 2.74 W/m(2) were achieved from the fabricated NR–CNF–AC TENG. This is attributed to the synergistic effect of the electron-donating properties of cellulose material and the large specific surface area of AC materials. The enhancement of TENG performance paves the way for the application of natural-based materials to convert mechanical energy into electricity, as a clean and sustainable energy source.