Cargando…
A Whole New Comprehension about ncRNA-Encoded Peptides/Proteins in Cancers
SIMPLE SUMMARY: The advent of bioinformatics and high-throughput sequencing have disclosed the complexity of ORFs in ncRNAs. Thus, there is a dire need to deep into the real role of ncRNA-encoded proteins/peptides. Considerable progress has been achieved in several fields, ranging from the mechanism...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9654040/ https://www.ncbi.nlm.nih.gov/pubmed/36358616 http://dx.doi.org/10.3390/cancers14215196 |
Sumario: | SIMPLE SUMMARY: The advent of bioinformatics and high-throughput sequencing have disclosed the complexity of ORFs in ncRNAs. Thus, there is a dire need to deep into the real role of ncRNA-encoded proteins/peptides. Considerable progress has been achieved in several fields, ranging from the mechanism translation of ORFs in ncRNAs to various reliable detection means and experimental approaches. Several studies have been stressing functions and mechanisms of ncRNA-encoded peptides/proteins in cancers, which are helpful for us to understand the specific biological regulating procedure. Innovative research on animal models confirms the potential of clinical applications, such as being tumor biomarkers, antitumor drugs and cancer vaccines. In this review, we conclude the latest discoveries of ncRNA-encoded peptides/proteins, we are looking forwards to accelerating the pace of detection and diagnosis development in cancers. ABSTRACT: It is generally considered that non-coding RNAs do not encode proteins; however, more recently, studies have shown that lncRNAs and circRNAs have ORFs which are regions that code for peptides/protein. On account of the lack of 5′cap structure, translation of circRNAs is driven by IRESs, m6A modification or through rolling amplification. An increasing body of evidence have revealed different functions and mechanisms of ncRNA-encoded peptides/proteins in cancers, including regulation of signal transduction (Wnt/β-catenin signaling, AKT-related signaling, MAPK signaling and other signaling), cellular metabolism (Glucose metabolism and Lipid metabolism), protein stability, transcriptional regulation, posttranscriptional regulation (regulation of RNA stability, mRNA splicing and translation initiation). In addition, we conclude the existing detection technologies and the potential of clinical applications in cancer therapy. |
---|