Cargando…
Effect of Resistant Dextrin on Intestinal Gas Homeostasis and Microbiota
Previous studies have shown that a resistant dextrin soluble fibre has prebiotic properties with related health benefits on blood glucose management and satiety. Our aim was to demonstrate the effects of continuous administration of resistant dextrin on intestinal gas production, digestive sensation...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9654059/ https://www.ncbi.nlm.nih.gov/pubmed/36364873 http://dx.doi.org/10.3390/nu14214611 |
_version_ | 1784828835522412544 |
---|---|
author | Barber, Claudia Sabater, Carlos Ávila-Gálvez, María Ángeles Vallejo, Fernando Bendezu, Rogger Alvaro Guérin-Deremaux, Laetitia Guarner, Francisco Espín, Juan Carlos Margolles, Abelardo Azpiroz, Fernando |
author_facet | Barber, Claudia Sabater, Carlos Ávila-Gálvez, María Ángeles Vallejo, Fernando Bendezu, Rogger Alvaro Guérin-Deremaux, Laetitia Guarner, Francisco Espín, Juan Carlos Margolles, Abelardo Azpiroz, Fernando |
author_sort | Barber, Claudia |
collection | PubMed |
description | Previous studies have shown that a resistant dextrin soluble fibre has prebiotic properties with related health benefits on blood glucose management and satiety. Our aim was to demonstrate the effects of continuous administration of resistant dextrin on intestinal gas production, digestive sensations, and gut microbiota metabolism and composition. Healthy subjects (n = 20) were given resistant dextrin (14 g/d NUTRIOSE(®), Roquette Frères, Lestrem, France) for four weeks. Outcomes were measured before, at the beginning, end, and two weeks after administration: anal evacuations of gas during daytime; digestive perception, girth, and gas production in response to a standard meal; sensory and digestive responses to a comfort meal; volume of colonic biomass by magnetic resonance; taxonomy and metabolic functions of fecal microbiota by shotgun sequencing; metabolomics in urine. Dextrin administration produced an initial increase in intestinal gas production and gas-related sensations, followed by a subsequent decrease, which magnified after discontinuation. Dextrin enlarged the volume of colonic biomass, inducing changes in microbial metabolism and composition with an increase in short chain fatty acids-producing species and modulation of bile acids and biotin metabolism. These data indicate that consumption of a soluble fibre induces an adaptative response of gut microbiota towards fermentative pathways with lower gas production. |
format | Online Article Text |
id | pubmed-9654059 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-96540592022-11-15 Effect of Resistant Dextrin on Intestinal Gas Homeostasis and Microbiota Barber, Claudia Sabater, Carlos Ávila-Gálvez, María Ángeles Vallejo, Fernando Bendezu, Rogger Alvaro Guérin-Deremaux, Laetitia Guarner, Francisco Espín, Juan Carlos Margolles, Abelardo Azpiroz, Fernando Nutrients Article Previous studies have shown that a resistant dextrin soluble fibre has prebiotic properties with related health benefits on blood glucose management and satiety. Our aim was to demonstrate the effects of continuous administration of resistant dextrin on intestinal gas production, digestive sensations, and gut microbiota metabolism and composition. Healthy subjects (n = 20) were given resistant dextrin (14 g/d NUTRIOSE(®), Roquette Frères, Lestrem, France) for four weeks. Outcomes were measured before, at the beginning, end, and two weeks after administration: anal evacuations of gas during daytime; digestive perception, girth, and gas production in response to a standard meal; sensory and digestive responses to a comfort meal; volume of colonic biomass by magnetic resonance; taxonomy and metabolic functions of fecal microbiota by shotgun sequencing; metabolomics in urine. Dextrin administration produced an initial increase in intestinal gas production and gas-related sensations, followed by a subsequent decrease, which magnified after discontinuation. Dextrin enlarged the volume of colonic biomass, inducing changes in microbial metabolism and composition with an increase in short chain fatty acids-producing species and modulation of bile acids and biotin metabolism. These data indicate that consumption of a soluble fibre induces an adaptative response of gut microbiota towards fermentative pathways with lower gas production. MDPI 2022-11-02 /pmc/articles/PMC9654059/ /pubmed/36364873 http://dx.doi.org/10.3390/nu14214611 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Barber, Claudia Sabater, Carlos Ávila-Gálvez, María Ángeles Vallejo, Fernando Bendezu, Rogger Alvaro Guérin-Deremaux, Laetitia Guarner, Francisco Espín, Juan Carlos Margolles, Abelardo Azpiroz, Fernando Effect of Resistant Dextrin on Intestinal Gas Homeostasis and Microbiota |
title | Effect of Resistant Dextrin on Intestinal Gas Homeostasis and Microbiota |
title_full | Effect of Resistant Dextrin on Intestinal Gas Homeostasis and Microbiota |
title_fullStr | Effect of Resistant Dextrin on Intestinal Gas Homeostasis and Microbiota |
title_full_unstemmed | Effect of Resistant Dextrin on Intestinal Gas Homeostasis and Microbiota |
title_short | Effect of Resistant Dextrin on Intestinal Gas Homeostasis and Microbiota |
title_sort | effect of resistant dextrin on intestinal gas homeostasis and microbiota |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9654059/ https://www.ncbi.nlm.nih.gov/pubmed/36364873 http://dx.doi.org/10.3390/nu14214611 |
work_keys_str_mv | AT barberclaudia effectofresistantdextrinonintestinalgashomeostasisandmicrobiota AT sabatercarlos effectofresistantdextrinonintestinalgashomeostasisandmicrobiota AT avilagalvezmariaangeles effectofresistantdextrinonintestinalgashomeostasisandmicrobiota AT vallejofernando effectofresistantdextrinonintestinalgashomeostasisandmicrobiota AT bendezuroggeralvaro effectofresistantdextrinonintestinalgashomeostasisandmicrobiota AT guerinderemauxlaetitia effectofresistantdextrinonintestinalgashomeostasisandmicrobiota AT guarnerfrancisco effectofresistantdextrinonintestinalgashomeostasisandmicrobiota AT espinjuancarlos effectofresistantdextrinonintestinalgashomeostasisandmicrobiota AT margollesabelardo effectofresistantdextrinonintestinalgashomeostasisandmicrobiota AT azpirozfernando effectofresistantdextrinonintestinalgashomeostasisandmicrobiota |