Cargando…

Imaging and Deep Learning Based Approach to Leaf Wetness Detection in Strawberry

The Strawberry Advisory System (SAS) is a tool developed to help Florida strawberry growers determine the risk of common fungal diseases and the need for fungicide applications. Leaf wetness duration (LWD) is one of the important parameters in SAS disease risk modeling. By accurately measuring the L...

Descripción completa

Detalles Bibliográficos
Autores principales: Patel, Arth M., Lee, Won Suk, Peres, Natalia A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9654107/
https://www.ncbi.nlm.nih.gov/pubmed/36366257
http://dx.doi.org/10.3390/s22218558
Descripción
Sumario:The Strawberry Advisory System (SAS) is a tool developed to help Florida strawberry growers determine the risk of common fungal diseases and the need for fungicide applications. Leaf wetness duration (LWD) is one of the important parameters in SAS disease risk modeling. By accurately measuring the LWD, disease risk can be better assessed, leading to less fungicide use and more economic benefits to the farmers. This research aimed to develop and test a more accurate leaf wetness detection system than traditional leaf wetness sensors. In this research, a leaf wetness detection system was developed and tested using color imaging of a reference surface and a convolutional neural network (CNN), which is one of the artificial-intelligence-based learning methods. The system was placed at two separate field locations during the 2021–2022 strawberry-growing season. The results from the developed system were compared against manual observation to determine the accuracy of the system. It was found that the AI- and imaging-based system had high accuracy in detecting wetness on a reference surface. The developed system can be used in SAS for determining accurate disease risks and fungicide recommendations for strawberry production and allows the expansion of the system to multiple locations.