Cargando…

Increase in Cd Tolerance through Seed-Borne Endophytic Fungus Epichloë gansuensis Affected Root Exudates and Rhizosphere Bacterial Community of Achnatherum inebrians

Soil cadmium (Cd) pollution is a serious environmental problem imperiling food safety and human health. The endophyte Epichloë gansuensis can improve the tolerance of Achnatherum inebrians to Cd stress. However, it is still unknown whether and how the endophyte helps host plants build up a specific...

Descripción completa

Detalles Bibliográficos
Autores principales: Jin, Jie, Huang, Rong, Wang, Jianfeng, Wang, Chao, Liu, Ronggui, Zhang, Hanwen, Deng, Maohua, Li, Shicai, Li, Xinglu, Tang, Rong, Li, Chunjie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9654189/
https://www.ncbi.nlm.nih.gov/pubmed/36361880
http://dx.doi.org/10.3390/ijms232113094
_version_ 1784828868245323776
author Jin, Jie
Huang, Rong
Wang, Jianfeng
Wang, Chao
Liu, Ronggui
Zhang, Hanwen
Deng, Maohua
Li, Shicai
Li, Xinglu
Tang, Rong
Li, Chunjie
author_facet Jin, Jie
Huang, Rong
Wang, Jianfeng
Wang, Chao
Liu, Ronggui
Zhang, Hanwen
Deng, Maohua
Li, Shicai
Li, Xinglu
Tang, Rong
Li, Chunjie
author_sort Jin, Jie
collection PubMed
description Soil cadmium (Cd) pollution is a serious environmental problem imperiling food safety and human health. The endophyte Epichloë gansuensis can improve the tolerance of Achnatherum inebrians to Cd stress. However, it is still unknown whether and how the endophyte helps host plants build up a specific bacterial community when challenged by CdCl(2). In this study, the responses of the structure and function of bacterial community and root exudates of E+ (E. gansuensis infected) and E− (E. gansuensis uninfected) plants to Cd stress were investigated. Analysis of bacterial community structure indicated that the rhizosphere bacterial community predominated over the root endosphere bacterial community in enhancing the resistance of CdCl(2) in a host mediated by E. gansuensis. E+ plant strengthened the interspecific cooperation of rhizosphere bacterial species. Moreover, the analysis of root exudates demonstrated E. gansuensis and increased the contents of organic acids and amino acids under Cd stress, and most root exudates were significantly correlated with rhizosphere bacteria. These results suggested that E. gansuensis employed a specific strategy to recruit distinct rhizosphere bacterial species and relevant functions by affecting root exudates to improve the tolerance of the host to Cd stress. This study provides a firm foundation for the potential application of symbionts in improving phytostabilization efficiency.
format Online
Article
Text
id pubmed-9654189
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-96541892022-11-15 Increase in Cd Tolerance through Seed-Borne Endophytic Fungus Epichloë gansuensis Affected Root Exudates and Rhizosphere Bacterial Community of Achnatherum inebrians Jin, Jie Huang, Rong Wang, Jianfeng Wang, Chao Liu, Ronggui Zhang, Hanwen Deng, Maohua Li, Shicai Li, Xinglu Tang, Rong Li, Chunjie Int J Mol Sci Article Soil cadmium (Cd) pollution is a serious environmental problem imperiling food safety and human health. The endophyte Epichloë gansuensis can improve the tolerance of Achnatherum inebrians to Cd stress. However, it is still unknown whether and how the endophyte helps host plants build up a specific bacterial community when challenged by CdCl(2). In this study, the responses of the structure and function of bacterial community and root exudates of E+ (E. gansuensis infected) and E− (E. gansuensis uninfected) plants to Cd stress were investigated. Analysis of bacterial community structure indicated that the rhizosphere bacterial community predominated over the root endosphere bacterial community in enhancing the resistance of CdCl(2) in a host mediated by E. gansuensis. E+ plant strengthened the interspecific cooperation of rhizosphere bacterial species. Moreover, the analysis of root exudates demonstrated E. gansuensis and increased the contents of organic acids and amino acids under Cd stress, and most root exudates were significantly correlated with rhizosphere bacteria. These results suggested that E. gansuensis employed a specific strategy to recruit distinct rhizosphere bacterial species and relevant functions by affecting root exudates to improve the tolerance of the host to Cd stress. This study provides a firm foundation for the potential application of symbionts in improving phytostabilization efficiency. MDPI 2022-10-28 /pmc/articles/PMC9654189/ /pubmed/36361880 http://dx.doi.org/10.3390/ijms232113094 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Jin, Jie
Huang, Rong
Wang, Jianfeng
Wang, Chao
Liu, Ronggui
Zhang, Hanwen
Deng, Maohua
Li, Shicai
Li, Xinglu
Tang, Rong
Li, Chunjie
Increase in Cd Tolerance through Seed-Borne Endophytic Fungus Epichloë gansuensis Affected Root Exudates and Rhizosphere Bacterial Community of Achnatherum inebrians
title Increase in Cd Tolerance through Seed-Borne Endophytic Fungus Epichloë gansuensis Affected Root Exudates and Rhizosphere Bacterial Community of Achnatherum inebrians
title_full Increase in Cd Tolerance through Seed-Borne Endophytic Fungus Epichloë gansuensis Affected Root Exudates and Rhizosphere Bacterial Community of Achnatherum inebrians
title_fullStr Increase in Cd Tolerance through Seed-Borne Endophytic Fungus Epichloë gansuensis Affected Root Exudates and Rhizosphere Bacterial Community of Achnatherum inebrians
title_full_unstemmed Increase in Cd Tolerance through Seed-Borne Endophytic Fungus Epichloë gansuensis Affected Root Exudates and Rhizosphere Bacterial Community of Achnatherum inebrians
title_short Increase in Cd Tolerance through Seed-Borne Endophytic Fungus Epichloë gansuensis Affected Root Exudates and Rhizosphere Bacterial Community of Achnatherum inebrians
title_sort increase in cd tolerance through seed-borne endophytic fungus epichloë gansuensis affected root exudates and rhizosphere bacterial community of achnatherum inebrians
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9654189/
https://www.ncbi.nlm.nih.gov/pubmed/36361880
http://dx.doi.org/10.3390/ijms232113094
work_keys_str_mv AT jinjie increaseincdtolerancethroughseedborneendophyticfungusepichloegansuensisaffectedrootexudatesandrhizospherebacterialcommunityofachnatheruminebrians
AT huangrong increaseincdtolerancethroughseedborneendophyticfungusepichloegansuensisaffectedrootexudatesandrhizospherebacterialcommunityofachnatheruminebrians
AT wangjianfeng increaseincdtolerancethroughseedborneendophyticfungusepichloegansuensisaffectedrootexudatesandrhizospherebacterialcommunityofachnatheruminebrians
AT wangchao increaseincdtolerancethroughseedborneendophyticfungusepichloegansuensisaffectedrootexudatesandrhizospherebacterialcommunityofachnatheruminebrians
AT liuronggui increaseincdtolerancethroughseedborneendophyticfungusepichloegansuensisaffectedrootexudatesandrhizospherebacterialcommunityofachnatheruminebrians
AT zhanghanwen increaseincdtolerancethroughseedborneendophyticfungusepichloegansuensisaffectedrootexudatesandrhizospherebacterialcommunityofachnatheruminebrians
AT dengmaohua increaseincdtolerancethroughseedborneendophyticfungusepichloegansuensisaffectedrootexudatesandrhizospherebacterialcommunityofachnatheruminebrians
AT lishicai increaseincdtolerancethroughseedborneendophyticfungusepichloegansuensisaffectedrootexudatesandrhizospherebacterialcommunityofachnatheruminebrians
AT lixinglu increaseincdtolerancethroughseedborneendophyticfungusepichloegansuensisaffectedrootexudatesandrhizospherebacterialcommunityofachnatheruminebrians
AT tangrong increaseincdtolerancethroughseedborneendophyticfungusepichloegansuensisaffectedrootexudatesandrhizospherebacterialcommunityofachnatheruminebrians
AT lichunjie increaseincdtolerancethroughseedborneendophyticfungusepichloegansuensisaffectedrootexudatesandrhizospherebacterialcommunityofachnatheruminebrians