Cargando…
Multi-Kernel Temporal and Spatial Convolution for EEG-Based Emotion Classification
Deep learning using an end-to-end convolutional neural network (ConvNet) has been applied to several electroencephalography (EEG)-based brain–computer interface tasks to extract feature maps and classify the target output. However, the EEG analysis remains challenging since it requires consideration...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9654218/ https://www.ncbi.nlm.nih.gov/pubmed/36365948 http://dx.doi.org/10.3390/s22218250 |
_version_ | 1784828875686019072 |
---|---|
author | Emsawas, Taweesak Morita, Takashi Kimura, Tsukasa Fukui, Ken-ichi Numao, Masayuki |
author_facet | Emsawas, Taweesak Morita, Takashi Kimura, Tsukasa Fukui, Ken-ichi Numao, Masayuki |
author_sort | Emsawas, Taweesak |
collection | PubMed |
description | Deep learning using an end-to-end convolutional neural network (ConvNet) has been applied to several electroencephalography (EEG)-based brain–computer interface tasks to extract feature maps and classify the target output. However, the EEG analysis remains challenging since it requires consideration of various architectural design components that influence the representational ability of extracted features. This study proposes an EEG-based emotion classification model called the multi-kernel temporal and spatial convolution network (MultiT-S ConvNet). The multi-scale kernel is used in the model to learn various time resolutions, and separable convolutions are applied to find related spatial patterns. In addition, we enhanced both the temporal and spatial filters with a lightweight gating mechanism. To validate the performance and classification accuracy of MultiT-S ConvNet, we conduct subject-dependent and subject-independent experiments on EEG-based emotion datasets: DEAP and SEED. Compared with existing methods, MultiT-S ConvNet outperforms with higher accuracy results and a few trainable parameters. Moreover, the proposed multi-scale module in temporal filtering enables extracting a wide range of EEG representations, covering short- to long-wavelength components. This module could be further implemented in any model of EEG-based convolution networks, and its ability potentially improves the model’s learning capacity. |
format | Online Article Text |
id | pubmed-9654218 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-96542182022-11-15 Multi-Kernel Temporal and Spatial Convolution for EEG-Based Emotion Classification Emsawas, Taweesak Morita, Takashi Kimura, Tsukasa Fukui, Ken-ichi Numao, Masayuki Sensors (Basel) Article Deep learning using an end-to-end convolutional neural network (ConvNet) has been applied to several electroencephalography (EEG)-based brain–computer interface tasks to extract feature maps and classify the target output. However, the EEG analysis remains challenging since it requires consideration of various architectural design components that influence the representational ability of extracted features. This study proposes an EEG-based emotion classification model called the multi-kernel temporal and spatial convolution network (MultiT-S ConvNet). The multi-scale kernel is used in the model to learn various time resolutions, and separable convolutions are applied to find related spatial patterns. In addition, we enhanced both the temporal and spatial filters with a lightweight gating mechanism. To validate the performance and classification accuracy of MultiT-S ConvNet, we conduct subject-dependent and subject-independent experiments on EEG-based emotion datasets: DEAP and SEED. Compared with existing methods, MultiT-S ConvNet outperforms with higher accuracy results and a few trainable parameters. Moreover, the proposed multi-scale module in temporal filtering enables extracting a wide range of EEG representations, covering short- to long-wavelength components. This module could be further implemented in any model of EEG-based convolution networks, and its ability potentially improves the model’s learning capacity. MDPI 2022-10-27 /pmc/articles/PMC9654218/ /pubmed/36365948 http://dx.doi.org/10.3390/s22218250 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Emsawas, Taweesak Morita, Takashi Kimura, Tsukasa Fukui, Ken-ichi Numao, Masayuki Multi-Kernel Temporal and Spatial Convolution for EEG-Based Emotion Classification |
title | Multi-Kernel Temporal and Spatial Convolution for EEG-Based Emotion Classification |
title_full | Multi-Kernel Temporal and Spatial Convolution for EEG-Based Emotion Classification |
title_fullStr | Multi-Kernel Temporal and Spatial Convolution for EEG-Based Emotion Classification |
title_full_unstemmed | Multi-Kernel Temporal and Spatial Convolution for EEG-Based Emotion Classification |
title_short | Multi-Kernel Temporal and Spatial Convolution for EEG-Based Emotion Classification |
title_sort | multi-kernel temporal and spatial convolution for eeg-based emotion classification |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9654218/ https://www.ncbi.nlm.nih.gov/pubmed/36365948 http://dx.doi.org/10.3390/s22218250 |
work_keys_str_mv | AT emsawastaweesak multikerneltemporalandspatialconvolutionforeegbasedemotionclassification AT moritatakashi multikerneltemporalandspatialconvolutionforeegbasedemotionclassification AT kimuratsukasa multikerneltemporalandspatialconvolutionforeegbasedemotionclassification AT fukuikenichi multikerneltemporalandspatialconvolutionforeegbasedemotionclassification AT numaomasayuki multikerneltemporalandspatialconvolutionforeegbasedemotionclassification |