Cargando…
Multi-Kernel Temporal and Spatial Convolution for EEG-Based Emotion Classification
Deep learning using an end-to-end convolutional neural network (ConvNet) has been applied to several electroencephalography (EEG)-based brain–computer interface tasks to extract feature maps and classify the target output. However, the EEG analysis remains challenging since it requires consideration...
Autores principales: | Emsawas, Taweesak, Morita, Takashi, Kimura, Tsukasa, Fukui, Ken-ichi, Numao, Masayuki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9654218/ https://www.ncbi.nlm.nih.gov/pubmed/36365948 http://dx.doi.org/10.3390/s22218250 |
Ejemplares similares
-
Familiarity effects in EEG-based emotion recognition
por: Thammasan, Nattapong, et al.
Publicado: (2016) -
Learning Subject-Generalized Topographical EEG Embeddings Using Deep Variational Autoencoders and Domain-Adversarial Regularization
por: Hagad, Juan Lorenzo, et al.
Publicado: (2021) -
EEG-Based Emotion Recognition by Convolutional Neural Network with Multi-Scale Kernels
por: Phan, Tran-Dac-Thinh, et al.
Publicado: (2021) -
Sparse Spatial-Temporal Emotion Graph Convolutional Network for Video Emotion Recognition
por: Liu, Xiaodong, et al.
Publicado: (2022) -
EEG-Based Emotion Classification Using Improved Cross-Connected Convolutional Neural Network
por: Dai, Jinxiao, et al.
Publicado: (2022)