Cargando…
A Knowledge Transfer Framework for General Alloy Materials Properties Prediction
Biomedical metal implants have many applications in clinical treatment. Due to a variety of application requirements, alloy materials with specific properties are being designed continuously. The traditional alloy properties testing experiment is faced with high-cost and time-consuming challenges. M...
Autores principales: | Sun, Hang, Zhang, Heye, Ren, Guangli, Zhang, Chao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9654329/ https://www.ncbi.nlm.nih.gov/pubmed/36363034 http://dx.doi.org/10.3390/ma15217442 |
Ejemplares similares
-
Cross-property deep transfer learning framework for enhanced predictive analytics on small materials data
por: Gupta, Vishu, et al.
Publicado: (2021) -
Introduction of Materials Genome Technology and Its Applications in the Field of Biomedical Materials
por: Qiu, Yashi, et al.
Publicado: (2023) -
Uncertainty Quantification of Material Properties in Ballistic Impact of Magnesium Alloys
por: Sun, Xingsheng
Publicado: (2022) -
A Conceptual Knowledge Visualisation Framework for Transfer of Knowledge: An Organisational Context
por: Smuts, Hanlie, et al.
Publicado: (2020) -
Force-Field Prediction of Materials Properties in
Metal-Organic Frameworks
por: Boyd, Peter G., et al.
Publicado: (2016)