Cargando…
Diagnostic Utility of Temporal Muscle Thickness as a Monitoring Tool for Muscle Wasting in Neurocritical Care
Temporalis muscle (TM) atrophy has emerged as a potential biomarker for muscle wasting. However, its diagnostic utility as a monitoring tool in intensive care remains uncertain. Hence, the objective of this study was to evaluate the diagnostic value of sequential ultrasound- and computed tomography...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9654352/ https://www.ncbi.nlm.nih.gov/pubmed/36364761 http://dx.doi.org/10.3390/nu14214498 |
Sumario: | Temporalis muscle (TM) atrophy has emerged as a potential biomarker for muscle wasting. However, its diagnostic utility as a monitoring tool in intensive care remains uncertain. Hence, the objective of this study was to evaluate the diagnostic value of sequential ultrasound- and computed tomography (CT)-based measurements of TM thickness (TMT). With a prospective observational design, we included 40 patients without preexisting sarcopenia admitted to a neurointensive care unit. TMT measurements, performed upon admission and serially every 3–4 days, were correlated with rectus femoris muscle thickness (RFT) ultrasound measurements. Interrater reliability was assessed by Bland Altmann plots and intraclass correlation coefficient (ICC). Analysis of variance was performed in subgroups to evaluate differences in the standard error of measurement (SEM). RFT decline was paralleled by ultrasound- as well as CT-based TMT measurements (TMT to RFT: r = 0.746, p < 0.001; CT-based TMT to ultrasound-based RFT: r = 0.609, p < 0.001). ICC was 0.80 [95% CI 0.74, 0.84] for ultrasound-based assessment and 0.90 [95% CI 0.88, 0.92] for CT-based TMT measurements. Analysis of variance for BMI, Heckmatt score, fluid balance, and agitation showed no evidence of measurement errors in these subgroups. This study demonstrates the clinical feasibility and utility of ultrasound- and CT-based TMT measurements for the assessment of muscle wasting. |
---|